System Architecture

arrow

Die Forschungsgruppe Festkörperchemie am HIU ist eine interdisziplinäre Forschungsgruppe, in welcher Chemiker, Physiker und Ingenieure tätig sind. Ihr Fokus liegt auf der Untersuchung sogenannter "Batteries beyond Lithium"-Batterien jenseits der Lithium-Ionen-Batteriesysteme. Parallel werden neue, alternative Lösungsansätze für die Lithium-freie-Batterien entwickelt.

Lithium-Ionen-Batterien sind zwar weit verbreitet, jedoch ist ihre Speicherkapazität begrenzt. In Zukunft werden vor allem für die Elektromobilität Batteriesysteme mit höherer Energiedichte gefragt sein, die bei geringerem Gewicht mehr elektrische Energie speichern können. Gefragt sind zukünftig auch lithiumfreie Batterien, die eine deutlich höhere Speicherkapazität und verbesserte Sicherheitseigenschaften aufweisen.

Mit diesen Arbeiten soll der Grundstein für neuartige, leistungsfähigere Batterien gelegt werden. Untersucht wird unter anderem das Potenzial unterschiedlicher Batteriematerialien, um die Energiedichte heutiger Batterie-Systeme zu erhöhen. Beispiele hierfür sind aktuell die Fluorid- und Chlorid-Ionen-Batterie, welche beide das Potential haben, die Speicherkapazität der Lithium-Ionen-Batterie signifikant zu überschreiten.

Darüber hinaus wird derzeit an Magnesium-Batterien geforscht, welche ebenfalls vergleichsweise hohe Energiedichten aufweisen. Des Weiteren beschäftigt sich die Forschungsgruppe mit der Entwicklung sogenannter Aktivmaterialien (u.a. Elektrodenmaterialien). Hier stehen u.a. Sicherheitsaspekte im Vordergrund.

Um elektrochemische Energiespeicher effizienter zu gestalten, werden auch neue Anoden- und Kathodenmaterialien aus Nanokompositen entwickelt und getestet.

 

Prof. Dr. Jens TübkePrincipal InvestigatorTel: +49 (0721) 4640 343Mail: jens.tuebke(at)kit.edu
ForschungsgruppeSystem Architecture
Dr. Alexander HoeflingScientistTel: +49 (0731) 50 34210Mail: alexander.hoefling(at)kit.edu
ForschungsgruppeSystem Architecture

(images will be uploaded shortly)

Thermal characterization of electrode materials

Heat generation and the accompanied variation in internal temperature become crucial parameters particularly for large-sized commercial cells. Being dependent on the load and the external temperature, they are important to describe thermal runaway behavior as well as performance and ageing of the cell.

Under the utilization of a heat flow calorimeter (TAM IV, TA Instruments) the research group is able to detect the small temperature changes on an electrode level. From the recorded heat flow rate one can conclude on the thermal behavior of large cells as well as faradaic and non-faradaic reactions taking place during operation.

 

Process development for all-solid-state batteries

In comparison to usual liquid electrolytes, employment of solid electrolytes promises safer, lighter and more eco-friendly all-solid-state batteries. In particular, solid polymer electrolytes (SPEs) offer enhanced thermal and mechanical stability, flexibility and easier processing. However, ionic conductivity and interfacial contact need to be improved in order to realize all-solid state batteries on a commercial scale. Against that background, the research group is working on a simple, scalable and solvent-free procedure that allows for the synthesis of SPEs inside the cathode material (in-situ). In this approach, the resulting SPEs are based on interpenetrating polymer networks (IPNs) allowing for the independent optimization of ionic conductivity and mechanical stability.

(images will be uploaded shortly)

(information will be uploaded shortly)

 

A specific filter for this group’s publications is not yet available. Please take a look at „publications“ in the website’s header for now.

Mitglieder
Prof. Dr. Jens TübkePrincipal InvestigatorTel: +49 (0721) 4640 343Mail: jens.tuebke(at)kit.edu
ForschungsgruppeSystem Architecture
Dr. Alexander HoeflingScientistTel: +49 (0731) 50 34210Mail: alexander.hoefling(at)kit.edu
ForschungsgruppeSystem Architecture
Forschung

(images will be uploaded shortly)

Thermal characterization of electrode materials

Heat generation and the accompanied variation in internal temperature become crucial parameters particularly for large-sized commercial cells. Being dependent on the load and the external temperature, they are important to describe thermal runaway behavior as well as performance and ageing of the cell.

Under the utilization of a heat flow calorimeter (TAM IV, TA Instruments) the research group is able to detect the small temperature changes on an electrode level. From the recorded heat flow rate one can conclude on the thermal behavior of large cells as well as faradaic and non-faradaic reactions taking place during operation.

 

Process development for all-solid-state batteries

In comparison to usual liquid electrolytes, employment of solid electrolytes promises safer, lighter and more eco-friendly all-solid-state batteries. In particular, solid polymer electrolytes (SPEs) offer enhanced thermal and mechanical stability, flexibility and easier processing. However, ionic conductivity and interfacial contact need to be improved in order to realize all-solid state batteries on a commercial scale. Against that background, the research group is working on a simple, scalable and solvent-free procedure that allows for the synthesis of SPEs inside the cathode material (in-situ). In this approach, the resulting SPEs are based on interpenetrating polymer networks (IPNs) allowing for the independent optimization of ionic conductivity and mechanical stability.

Equipment

(images will be uploaded shortly)

Zusammenarbeit

(information will be uploaded shortly)

 

Publikationen

A specific filter for this group’s publications is not yet available. Please take a look at „publications“ in the website’s header for now.

Fakten zur Gruppe

Alles anzeigen Weniger anzeigen