Ziel ist es, Materialien in einem frühen Entwicklungsstadium hinsichtlich Energieeffizienz, Alterung und Kompatibilität mit anderen Zellbestandteilen zu charakterisieren und aus den gewonnen Erkenntnissen eine Optimierung des Zelldesigns abzuleiten.
Die Forschungsgruppe Systemarchitektur bildet ein Bindeglied zwischen den Materialgruppen des HIU und der zukünftigen Anwendbarkeit von neuartigen Materialien in kommerziellen Zellen.
Neben den auf Interkalation basierenden Aktivmaterialien, die derzeit in kommerziell erhältlichen Lithium-Ionen-Batterien eingesetzt werden, stehen Konversions- und Legierungsmaterialien im Fokus der Forschung. Die unterschiedlichen Reaktionsmechanismen fordern neue Herangehensweisen bei der Elektrodenpräparation, weil damit bspw. Volumenänderungen oder eine erhöhte Wärmetönung verbunden sind. Gleichzeitig können Materialneuentwicklungen, wie Polymerelektrolyte, aber auch mehr Freiheiten in der Zellarchitektur generieren, da sie flexible Festkörperelektroden ermöglichen und auf vielfältige Weise verarbeitet werden können.
Derzeit ist die Gruppe auf zwei Themenfeldern sowie in mehreren Kooperationen innerhalb des HIU aktiv.
(images will be uploaded shortly)
Heat generation and the accompanied variation in internal temperature become crucial parameters particularly for large-sized commercial cells. Being dependent on the load and the external temperature, they are important to describe thermal runaway behavior as well as performance and ageing of the cell.
Under the utilization of a heat flow calorimeter (TAM IV, TA Instruments) the research group is able to detect the small temperature changes on an electrode level. From the recorded heat flow rate one can conclude on the thermal behavior of large cells as well as faradaic and non-faradaic reactions taking place during operation.
In comparison to usual liquid electrolytes, employment of solid electrolytes promises safer, lighter and more eco-friendly all-solid-state batteries. In particular, solid polymer electrolytes (SPEs) offer enhanced thermal and mechanical stability, flexibility and easier processing. However, ionic conductivity and interfacial contact need to be improved in order to realize all-solid state batteries on a commercial scale. Against that background, the research group is working on a simple, scalable and solvent-free procedure that allows for the synthesis of SPEs inside the cathode material (in-situ). In this approach, the resulting SPEs are based on interpenetrating polymer networks (IPNs) allowing for the independent optimization of ionic conductivity and mechanical stability.
(images will be uploaded shortly)
(information will be uploaded shortly)
(images will be uploaded shortly)
Heat generation and the accompanied variation in internal temperature become crucial parameters particularly for large-sized commercial cells. Being dependent on the load and the external temperature, they are important to describe thermal runaway behavior as well as performance and ageing of the cell.
Under the utilization of a heat flow calorimeter (TAM IV, TA Instruments) the research group is able to detect the small temperature changes on an electrode level. From the recorded heat flow rate one can conclude on the thermal behavior of large cells as well as faradaic and non-faradaic reactions taking place during operation.
In comparison to usual liquid electrolytes, employment of solid electrolytes promises safer, lighter and more eco-friendly all-solid-state batteries. In particular, solid polymer electrolytes (SPEs) offer enhanced thermal and mechanical stability, flexibility and easier processing. However, ionic conductivity and interfacial contact need to be improved in order to realize all-solid state batteries on a commercial scale. Against that background, the research group is working on a simple, scalable and solvent-free procedure that allows for the synthesis of SPEs inside the cathode material (in-situ). In this approach, the resulting SPEs are based on interpenetrating polymer networks (IPNs) allowing for the independent optimization of ionic conductivity and mechanical stability.
(images will be uploaded shortly)
(information will be uploaded shortly)
You a scientist yourself? A journalist, a political decision-maker or business representative? In our newsletters we compile the latest battery research news for you. Specially tailored to your personal area of interest.
Helmholtz Institute Ulm Electrochemical energy storage (HIU)
Helmholtzstraße 11
89081 Ulm
Deutschland
Tel.: +49 (0731) 50 34001
Fax: +49 (0731) 50 34009