Young Investigator Group NEW E²

arrow

Die zu Beginn des Jahres 2017 durch die Vector Stiftung geförderte Nachwuchsgruppe NEW E2, geleitet von Dominic Bresser, befasst sich insbesondere mit der Darstellung und Untersuchung innovativer Anodenmaterialien für Lithium-Ionen-Batterien. Ziel des Forschungsvorhabens ist die synergetische Kombination verschiedener Reaktionsmechanismen (insbesondere Legierungs- und Konversions-Mechanismen) zur reversiblen Lithium-Speicherung, um Elektrodenmaterialien mit verbesserten Energie- und Leistungs-Dichten bereitzustellen.

Der Fokus der Forschungsarbeiten der Nachwuchsgruppe liegt auf der Entwicklung und Charakterisierung alternativer Anodenmaterialien für Lithium-Ionen-Batterien, die Lithium-Ionen mittels einer Kombination aus Legierungs- und Konversionsreaktionen speichern – sogenannten Konversions-Legierungs-Materialien. Die synergetische Kombination dieser beiden Mechanismen hat zum Ziel, die jeweiligen Vorteile der beiden Mechanismen zu vereinen und auf diese Weise die jeweiligen intrinsischen Herausforderungen zu überwinden. So bieten Legierungsmaterialien häufig höhere Energiedichten und eine bessere Energieeffizienz, allerdings verbunden mit dem Nachteil extensiver Volumenveränderungen. Konversionsmaterialien hingegen zeigen geringere Volumenveränderungen und häufig eine bessere Schnellladefähigkeit, dafür aber geringere Energiedichten und eine vergleichsweise niedrigere Energieeffizienz.

 

Die Vereinigung der beiden Mechanismen innerhalb einzelner Partikel ermöglicht somit eine Reduzierung der Volumenveränderungen bei gleichzeitig verbesserten Energie- und Leistungsdichten sowie eine effizientere Energiespeicherung.

 

Um dies zu erreichen, erforscht die Gruppe Konversions-Legierungs-Materialien verschiedener Zusammensetzungen im Hinblick auf den Einfluss der einzelnen Legierungs- und Konversionselemente und deren Zusammenwirkung. Die hierzu verwendeten elektrochemischen Methoden werden durch eine Vielfalt an weiteren (in situ/operando) Untersuchungsmethoden ergänzt, mit dem Ziel die zugrundeliegenden Mechanismen besser zu verstehen und hierauf aufbauend neue Anodenmaterialien zu entwickeln, die die Realisierung leistungsfähigerer Lithium-Ionen-Batterien ermöglichen.

 

Jakob AsenbauerPhD StudentTel: +49 (0731) 50 34115Mail: jakob.asenbauer(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Adele BirrozziPhD StudentTel: +49 (0731) 50 34115Mail: adele.birrozzi(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Dr. Dominic BresserPrincipal InvestigatorTel: +49 (0731) 50 34117Mail: dominic.bresser(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Xu DongPhD StudentTel: +49 (0731) 50 34123Mail: xu.dong(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Tobias EisenmannPhD StudentTel: +49 (0731) 50 34112Mail: tobias.eisenmann(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Medina JasarevicPhD StudentTel: +49 (0731) 50 34113Mail: medina.jasarevic(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Qi LiPhD StudentTel: +49 (0731) 50 34027Mail: qi.li(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Alexander MayerPhD StudentTel: +49 (0731) 50 34106Mail: alexander.mayer(at)kit.edu
ForschungsgruppeElectrochemistry for Batteries
Mayokun Uzezi OlutogunPhD StudentTel: +49 (0731) 50 34114Mail: mayokun.olutogun(at)kit.edu
ForschungsgruppeElectrochemistry for Batteries
Nikhil SchmelzlePhD StudentTel: +49 (0731) 50 34108Mail: nikhil.schmelzle(at)kit.edu
ForschungsgruppeElectrochemistry for Batteries
Kai ShiPhD StudentTel: +49 (0731) 50 34110Mail: kai.shi(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Dominik SteinlePhD StudentTel: +49 (0731) 50 34105Mail: dominik.steinle(at)kit.edu
ForschungsgruppeElectrochemistry for Batteries
Po-Hua SuPhD StudentTel: +49 (0731) 50 34121Mail: po-hua.su(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Anna-Lena WirschingMasterstudentinTel: Mail:
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Yun XuPhD StudentTel: Mail: yun.xu(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Xilai XuePhD StudentTel: Tel: +49 (0731) 50 34121Mail: xilai.xue(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries

(images will be uploaded shortly)

 

Lithium-ion batteries are presently the energy storage technology of choice for a wide range of applications, including portable electronic devices, (hybrid) electric vehicles, and, increasingly, short- to mid-term stationary applications to buffer the highly fluctuating energy supply from renewables. Nonetheless, further improvements regarding their energy and power density as well as their safety are needed especially for the employment in electric vehicles.

Our group is trying to address these issues by investigating new anode materials, combining the conversion and alloying lithium storage mechanisms in one single compound, thus, synergistically leveraging their specific advantages and ideally overcoming their intrinsic challenges (Bresser et al., Energy Environ. Sci., 2016).

In order to achieve this ambitious goal, the activities are targeting an enhanced understanding of the hybrid reaction mechanism and its dependency on the nature of the involved elements. In a recent publication (Giuli et al., Materials, 2017), we were able to show that the doping of zinc oxide with aliovalent cations like Fe3+ results in the presence of cationic vacancies. The presence of these vacancies allows for an initial lithium ion insertion into the wurtzite structure, kinetically favoring the subsequent conversion reaction.

Also, we are developing new conversion/alloying materials (CAMs), aiming for further improved energy and power densities while considering the energy efficiency as well as the abundance of the employed elements, their nontoxicity and cost efficiency. This work is accompanied by the investigation of advanced hierarchical secondary particle architectures and the implementation of nanostructured, electronically conductive matrices to ensure long-term cycling stability and high rate capability. Eventually, the overall target is the realization of demonstrator full-cells, comprising “next generation” electrolyte systems and cathode active materials.

As science ideally does not know any barriers, we are collaborating with several international research groups, each of them having great expertise in their field, and we will be more than grateful to further extend these collaborative activities in future.

(information will be uploaded shortly)

(images will be uploaded shortly)

Collaborations

  • LEPMI Grenoble
  • UCL
  • University of Camerino
  • rhd-instruments

 

Promotors

  •  Vector-Stiftung

A specific filter for this group’s publications is not yet available. Please take a look at „publications“ in the website’s header for now.

Mitglieder
Jakob AsenbauerPhD StudentTel: +49 (0731) 50 34115Mail: jakob.asenbauer(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Adele BirrozziPhD StudentTel: +49 (0731) 50 34115Mail: adele.birrozzi(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Dr. Dominic BresserPrincipal InvestigatorTel: +49 (0731) 50 34117Mail: dominic.bresser(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Xu DongPhD StudentTel: +49 (0731) 50 34123Mail: xu.dong(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Tobias EisenmannPhD StudentTel: +49 (0731) 50 34112Mail: tobias.eisenmann(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Medina JasarevicPhD StudentTel: +49 (0731) 50 34113Mail: medina.jasarevic(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Qi LiPhD StudentTel: +49 (0731) 50 34027Mail: qi.li(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Alexander MayerPhD StudentTel: +49 (0731) 50 34106Mail: alexander.mayer(at)kit.edu
ForschungsgruppeElectrochemistry for Batteries
Mayokun Uzezi OlutogunPhD StudentTel: +49 (0731) 50 34114Mail: mayokun.olutogun(at)kit.edu
ForschungsgruppeElectrochemistry for Batteries
Nikhil SchmelzlePhD StudentTel: +49 (0731) 50 34108Mail: nikhil.schmelzle(at)kit.edu
ForschungsgruppeElectrochemistry for Batteries
Kai ShiPhD StudentTel: +49 (0731) 50 34110Mail: kai.shi(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Dominik SteinlePhD StudentTel: +49 (0731) 50 34105Mail: dominik.steinle(at)kit.edu
ForschungsgruppeElectrochemistry for Batteries
Po-Hua SuPhD StudentTel: +49 (0731) 50 34121Mail: po-hua.su(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Anna-Lena WirschingMasterstudentinTel: Mail:
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Yun XuPhD StudentTel: Mail: yun.xu(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Xilai XuePhD StudentTel: Tel: +49 (0731) 50 34121Mail: xilai.xue(at)kit.edu
ForschungsgruppeYoung Investigator Group NEW E²Electrochemistry for Batteries
Forschung

(images will be uploaded shortly)

 

Lithium-ion batteries are presently the energy storage technology of choice for a wide range of applications, including portable electronic devices, (hybrid) electric vehicles, and, increasingly, short- to mid-term stationary applications to buffer the highly fluctuating energy supply from renewables. Nonetheless, further improvements regarding their energy and power density as well as their safety are needed especially for the employment in electric vehicles.

Our group is trying to address these issues by investigating new anode materials, combining the conversion and alloying lithium storage mechanisms in one single compound, thus, synergistically leveraging their specific advantages and ideally overcoming their intrinsic challenges (Bresser et al., Energy Environ. Sci., 2016).

In order to achieve this ambitious goal, the activities are targeting an enhanced understanding of the hybrid reaction mechanism and its dependency on the nature of the involved elements. In a recent publication (Giuli et al., Materials, 2017), we were able to show that the doping of zinc oxide with aliovalent cations like Fe3+ results in the presence of cationic vacancies. The presence of these vacancies allows for an initial lithium ion insertion into the wurtzite structure, kinetically favoring the subsequent conversion reaction.

Also, we are developing new conversion/alloying materials (CAMs), aiming for further improved energy and power densities while considering the energy efficiency as well as the abundance of the employed elements, their nontoxicity and cost efficiency. This work is accompanied by the investigation of advanced hierarchical secondary particle architectures and the implementation of nanostructured, electronically conductive matrices to ensure long-term cycling stability and high rate capability. Eventually, the overall target is the realization of demonstrator full-cells, comprising “next generation” electrolyte systems and cathode active materials.

As science ideally does not know any barriers, we are collaborating with several international research groups, each of them having great expertise in their field, and we will be more than grateful to further extend these collaborative activities in future.

Equipment

(information will be uploaded shortly)

Zusammenarbeit

(images will be uploaded shortly)

Collaborations

  • LEPMI Grenoble
  • UCL
  • University of Camerino
  • rhd-instruments

 

Promotors

  •  Vector-Stiftung
Publikationen

A specific filter for this group’s publications is not yet available. Please take a look at „publications“ in the website’s header for now.

Fakten zur Gruppe

Alles anzeigen Weniger anzeigen