Solid-State Sodium Batteries – Till Ortmann

February 19th, 2023

Paper pitch: https://onlinelibrary.wiley.com/doi/10.1002/aenm.202202712

Abstract: In recent years, many efforts have been made to introduce reversible alkali metal anodes using solid electrolytes in order to increase the energy density of next-generation batteries. In this respect, Na3.4Zr2Si2.4P0.6O12 is a promising solid electrolyte for solid-state sodium batteries, due to its high ionic conductivity and apparent stability versus sodium metal.

The formation of a kinetically stable interphase in contact with sodium metal is revealed by time-resolved impedance analysis, in situ X-ray photoelectron spectroscopy, and transmission electron microscopy. Based on pressure- and temperature-dependent impedance analyses, it is concluded that the Na|Na3.4Zr2Si2.4P0.6O12 interface kinetics is dominated by current constriction rather than by charge transfer. Cross-sections of the interface after anodic dissolution at various mechanical loads visualize the formed pore structure due to the accumulation of vacancies near the interface. The temporal evolution of the pore morphology after anodic dissolution is monitored by time-resolved impedance analysis. Equilibration of the interface is observed even under extremely low external mechanical load, which is attributed to fast vacancy diffusion in sodium metal, while equilibration is faster and mainly caused by creep at increased external load. The presented information provides useful insights into a more profound evaluation of the sodium metal anode in solid-state batteries.

Till Ortmann is PhD candidate at the Institute for Physical Chemistry of the Justus Liebig University Giessen.

Further articles

Research overview

First German factory for battery electrolyte - Dr. Beltrop (E-Lyte) & Dr. Hofmann (KIT)

September 18th, 2023 It is the best-protected material recipe for a #battery: the #electrolyte. Consisting of solvents, conductive salts and additives, it enables ion mobility between the positive and negative poles within a battery. Without ... Learn more

BEV trucks vs. Hydrogen trucks - Dr. Jürgen Wagner (MAN)

August 20th, 2023 Dr. Jürgen Wagner (Vice President MAN Truck & Bus SE) explains his company's electrification strategy. In fact, the Munich-based company is pursuing a three-pronged approach: The manufacturer of commercial vehicles and truc... Learn more

Prof. Fichtner & Dr. Bresser - Sodium-Ion Batteries

May 7th, 2023 Sodium-ion batteries have been overshadowed by lithium-ion batteries for decades, but there is a thousand times more sodium in the earth's crust than lithium. And now battery chemistry has evolved to the point where sodium-ion b... Learn more

Prof. Fichtner - CATL "Condensed Battery"

April 26th, 2023 Have the European battery producers completely lost touch? Chinese battery manufacturers are celebrating new product successes everywhere: The first sodium batteries (BYD, CATL, 2021) are being produced in Asia, high-performa... Learn more

Prof. Stein - Pulsed charging in battery formation process

April 23rd, 2023 Traditionally, fresh battery cells are carefully charged for up to 24 hours immediately after production. This "formation process" is cost-intensive, time-consuming and usually takes a long time. A group of battery researcher... Learn more