Life Cycle Assessment of Lithium-Ion Batteries – Merve Erakca

February 7th, 2023

Paper pitch: https://www.sciencedirect.com/science/article/pii/S0959652622050843?via%3Dihub

Abstract: Battery storage systems have become an important pillar in the transformation of the energy and transportation sector over the last decades. Lithium-ion batteries (LIBs) are the dominating technology in this process making them a constant subject of analysis regarding their sustainability. To assess their environmental performance, several Life Cycle Assessments (LCA) of LIBs have been performed over the last years. Yet, the amount of available primary data on their production remains low, leading to recurrent reliance on a few disclosed datasets, mostly at industrial scale. Thus, there is a need for new LCA studies at different scales (lab, pilot, industrial) using transparent datasets to facilitate more reliable and robust assessments. This work presents a screening of recent environmental assessments for LIBs at different production scales aiming at identifying remaining gaps and challenges, and deriving a detailed LCA of a lab-scale battery cell production.

For the first time the environmental impact of a lab-scale battery production based on process-oriented primary data is investigated. The results are flanked by sensitivity analyses and scenarios and compared with literature values. The hotspots identified in this study, cathode slurry, anode current collector, as well as the energy demand of the dry room and coating process, are consistent with the literature, although the absolute values are an order of magnitude larger. The main reason for this are the inefficiencies inherent in lab-scale production. In order to analyze the effects of production scale, an upscaling to the pilot scale is performed.

Merve Erakca is a PhD candidate at the Institute for Technology Assessment and Systems Analysis (ITAS) of the Karlsruhe Institute of Technology.

Further articles

Research overview

First German factory for battery electrolyte - Dr. Beltrop (E-Lyte) & Dr. Hofmann (KIT)

September 18th, 2023 It is the best-protected material recipe for a #battery: the #electrolyte. Consisting of solvents, conductive salts and additives, it enables ion mobility between the positive and negative poles within a battery. Without ... Learn more

BEV trucks vs. Hydrogen trucks - Dr. Jürgen Wagner (MAN)

August 20th, 2023 Dr. Jürgen Wagner (Vice President MAN Truck & Bus SE) explains his company's electrification strategy. In fact, the Munich-based company is pursuing a three-pronged approach: The manufacturer of commercial vehicles and truc... Learn more

Prof. Fichtner & Dr. Bresser - Sodium-Ion Batteries

May 7th, 2023 Sodium-ion batteries have been overshadowed by lithium-ion batteries for decades, but there is a thousand times more sodium in the earth's crust than lithium. And now battery chemistry has evolved to the point where sodium-ion b... Learn more

Prof. Fichtner - CATL "Condensed Battery"

April 26th, 2023 Have the European battery producers completely lost touch? Chinese battery manufacturers are celebrating new product successes everywhere: The first sodium batteries (BYD, CATL, 2021) are being produced in Asia, high-performa... Learn more

Prof. Stein - Pulsed charging in battery formation process

April 23rd, 2023 Traditionally, fresh battery cells are carefully charged for up to 24 hours immediately after production. This "formation process" is cost-intensive, time-consuming and usually takes a long time. A group of battery researcher... Learn more