16.04.2023
Wolfgang Binder & Anja Marinow von der Martin-Luther-Universität Halle-Wittenberg entwickeln selbstheilende Batteriematerialien mithilfe nanostrukturierter Polymer-Materialien. Das sind Verbundstoffe, die als feste Elektrolyt-Kunststoffe aus sich wiederholenden Einheiten (Monomeren) bestehen. Ziel dieser speziellen Polymere ist es, die klassischen Alterungsprozesse sowohl im Elektrolyten als auch an den Elektroden zu verlangsamen oder sogar komplett zu verhindern.
In Batterien treten normalerweise elektrochemische Reaktionen auf, die strukturelle Veränderungen in Materialien verursachen. Einige davon sind beabsichtigt – nur so kann die Batterie effektiv als Stromspeicher dienen. Andere führen langfristig als ungewollte Nebeneffekte zu einer drastischen Verringerung der Batterieleistung. So entwickeln sich beispielsweise durch das „Lithium-Plating“ sog. Dendriten, die als metallische Lithium-Nadeln einen Kurzschluss innerhalb der Zelle auslösen können. Auch die SEI-Schicht („Solid-Electrolyte-Interphase“) kann unschöne Risse bekommen, sodass die Batterie immer mehr an Kapazität und Leistung verliert.
Innerhalb des EU-Projekts „BAT4EVER“ konzentrieren sich Wolfgang Binder und Anja Marinow auf Selbstheilungsmechanismen dieser Mikroschäden und Materialverluste, die besonders während Lade- und Entladezyklen entstehen. Die beiden widmen sich Materialcharakterisierungs-Methoden und einer Modellierung von Materialverhalten.
Laut Prof. Dr. Wolfgang Binder arbeiten auch namhafte Batteriehersteller wie StoreDot im Bereich der Batterie-Leistungselektronik daran, eine (normalerweise unbeabsichtigte und gefährliche) Tiefentladung von Zellen herbeizuführen und durch einen geordneten Spannungs- und Strom-Impuls perspektivisch Kapazität und Leistung wieder zurückzugewinnen. Diese Rückgewinnungsmechanismen befinden sich jedoch (wie alle selbstheilenden Batteriekonzepte) noch allesamt noch in der Entwicklungsphase.
Abonnieren Sie den Geladen-Podcast:
https://www.geladen-podcast.de/