17.09.2018
Die HIU-Forschungsgruppe um Axel Groß hat es mit ihrer elementspezifischen Theorie – warum sich Batterie-Elektrodenmaterialien in ihrer Neigung zum Wachstum von Dendriten unterscheiden – auf das Backcover der Zeitschrift Energy & Environmental Science der Royal Society of Chemistry geschafft. Brennende Mobiltelefone oder in Flammen aufgehende Elektroautos gehen auf Dendritenbildung in Batterien zurück. Die Ergebnisse könnten helfen die Sicherheitsprobleme mit den strauchartigen Kristallstrukturen, die Kurzschlüsse verursachen können, zu lösen.
Die Forschenden suchten nach Batteriematerialien, die überhaupt keine Dendriten bilden. Während Lithium-, Zink- und Natriumbatterien häufig diese funkeninduzierenden Strukturen bilden, sind Magnesium- und Aluminiumbatterien nahezu dendritenfrei. Um die Dendritenbildung besser zu verstehen, suchten sie daher nach einem Zusammenhang zwischen den Selbstdiffusionsgrenzschichten verschiedener Metalle. Diese Grenzschichten sind die Schnittstellen, die die Diffusion eines Atoms auf einer Oberfläche aus dem gleichen Element reduzieren und bestimmen, wie wahrscheinlich es ist, dass sich Metallatome auf Elektroden ablagern und Dendritenwachstum verursachen.
Durch die Untersuchung der verschiedenen Metalle fanden Axel Groß und sein Team heraus, dass Lithium-Ionen relativ hohe Selbstdiffusionsgrenzschichten aufweisen, was bedeutet, dass die Lithium-Ionen, sobald sie einen Gradienten auf eine Oberfläche diffundiert haben, dort verbleiben und eine raue Stelle bilden. Der Dendrit verzweigt sich dann von diesem Defekt. Dies deutet darauf hin, dass die Dendritenbildung eine inhärente Eigenschaft dieses Elements ist. Im Vergleich dazu haben Metalle wie Magnesium eine sehr geringe Selbstdiffusionsgrenzschicht und bilden glatte Oberflächen, so dass Dendriten weitaus seltener auftreten.
Die Theorie wurde zudem in Chemistry World in einer eigenen Meldung besprochen:
https://www.chemistryworld.com/news/diffusion-barrier-data-to-help-batteries-ditch-the-dendrites/3009502.article
Weitere Informationen finden Sie hier:
pubs.rsc.org/en/Content/ArticleLanding/2018/EE/C8EE01448E