Solid-State Chemistry

arrow

Die Forschungsgruppe Festkörperchemie am HIU ist eine interdisziplinäre Forschungsgruppe, in welcher Chemiker, Physiker und Ingenieure tätig sind. Ihr Fokus liegt auf der Untersuchung sogenannter "Batteries beyond Lithium"-Batterien jenseits der Lithium-Ionen-Batteriesysteme. Parallel werden neue, alternative Lösungsansätze für die Lithium-freie-Batterien entwickelt.

Lithium-Ionen-Batterien sind zwar weit verbreitet, jedoch ist ihre Speicherkapazität begrenzt. In Zukunft werden vor allem für die Elektromobilität Batteriesysteme mit höherer Energiedichte gefragt sein, die bei geringerem Gewicht mehr elektrische Energie speichern können. Gefragt sind zukünftig auch lithiumfreie Batterien, die eine deutlich höhere Speicherkapazität und verbesserte Sicherheitseigenschaften aufweisen.

Mit diesen Arbeiten soll der Grundstein für neuartige, leistungsfähigere Batterien gelegt werden. Untersucht wird unter anderem das Potenzial unterschiedlicher Batteriematerialien, um die Energiedichte heutiger Batterie-Systeme zu erhöhen. Beispiele hierfür sind aktuell die Fluorid- und Chlorid-Ionen-Batterie, welche beide das Potential haben, die Speicherkapazität der Lithium-Ionen-Batterie signifikant zu überschreiten.

Darüber hinaus wird derzeit an Magnesium-Batterien geforscht, welche ebenfalls vergleichsweise hohe Energiedichten aufweisen. Des Weiteren beschäftigt sich die Forschungsgruppe mit der Entwicklung sogenannter Aktivmaterialien (u.a. Elektrodenmaterialien). Hier stehen u.a. Sicherheitsaspekte im Vordergrund.

Um elektrochemische Energiespeicher effizienter zu gestalten, werden auch neue Anoden- und Kathodenmaterialien aus Nanokompositen entwickelt und getestet.

 

Dr. Ebrahim Abouzari-LotfScientistTel: +49 (0721) 608 28972Mail: Ebrahim.abouzari-lotf(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Montaha AnjassScientistTel: +49 (0731) 50 34316Mail: montaha.anjass(at)uni-ulm.de
ForschungsgruppeSolid State ChemistryMolecular Metal Oxide Composites
Tobias Braun PhD StudentTel: +49 (0731) 50 34222Mail: Tobias.Braun2(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Bosu Babu DasariGuest ScientistTel: +49 (0721) 608 26492Mail: bosu.dasari(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Sirshendu DindaScientistTel: +49 (0731) 50 34225Mail: Sirshendu.Dinda(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Abdelouahab ElKharbachiScientistTel: +49 (0731) 50 34219Mail: abdel.kharbachi(at)kit.edu
ForschungsgruppeSolid State Chemistry
Prof. Dr. Maximilian FichtnerPrincipal InvestigatorTel: +49 (0731) 50 34201
(0721) 608 25340
Mail: m.fichtner(at)kit.edu
ForschungsgruppeSolid State Chemistry
Simon GreinerPhD StudentTel: 34310Mail: simon.greiner(at)uni-ulm.de
ForschungsgruppeSolid State ChemistryMolecular Metal Oxide Composites
Dr. Yang HuScientistTel: +49 (0731) 50 34086Mail: yang.hu(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Guruprakash KarkeraScientistTel: +49 (0731) 50 34221Mail: karkera.guruprakash(at)uni-ulm.de
ForschungsgruppeSolid State Chemistry
Dr. Robert LehmannScientific OfficerTel: +49 (0731) 50 34203Mail: robert.lehmann(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Zhenyou LiScientistTel: +49 (0721) 608 28972Mail: zhenyou.li(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Zhen MengScientistTel: +49 (0721) 608 26485Mail: zhen.meng(at)partner.kit.edu
ForschungsgruppeSolid State Chemistry
Yasaman MoghadamPhD StudentTel: +49 (0731) 50 34212Mail: yasaman.moghadam(at)kit.edu
ForschungsgruppeSolid State Chemistry
Venkateswarlu PamidiPhD StudentTel: +49 (0731) 50 34215Mail: venkateswarlu.pamidi(at)uni-ulm.de
ForschungsgruppeSolid State Chemistry
Dr. Frank PammerScientific OfficerTel: +49 (0731) 50 34203Mail: frank.pammer(at)kit.edu
ForschungsgruppeSolid State Chemistry
Adam ReupertPhD StudentTel: +49 (0721) 608 26482Mail: adam.reupert(at)uni-ulm.de
ForschungsgruppeSolid State Chemistry
Ananyo Roy PhD StudentTel: +49 (0721) 608 28924Mail: ananyo.roy(at)partner.kit.edu
ForschungsgruppeSolid State Chemistry
Shivam TrivediPhD StudentTel: +49 (0731) 50 34224Mail: shivam.trivedi(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Ediga UmeshbabuScientistTel: +49 (0731) 50 34209Mail: ediga.umeshbabu(at)kit.edu
ForschungsgruppeSolid State Chemistry
Katja VetterSecretary of Prof. FichtnerTel: +49 (0731) 50 34020Mail: katja.vetter(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Liping WangScientistTel: +49 (0721) 608 28924Mail: liping.wang(at)kit.edu
ForschungsgruppeSolid State Chemistry
Yanlei XiuPhD StudentTel: +49 (0721) 608 28924Mail: yanlei.xiu(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Zhirong Zhao-KargerPrincipal Investigator/KIT-INTTel: +49 (0721) 608 28908Mail: zhirong.zhao-karger(at)kit.edu
ForschungsgruppeSolid State Chemistry

(images will be uploaded shortly)

The Fluoride Ion Battery

In search of new concepts to build batteries with high energy densities, electrochemical cells based on metal fluorides may be promising.

 

We have demonstrated the first reversibly working battery cells based on fluoride shuttle. In secondary fluoride batteries, fluoride anion acts as charge transfer ion between a metal/ metal fluoride pair where it will react with metal or evolve from metal fluoride depending on the flow of current. The theoretical capacity can be several times higher than that of conventional Lithium Ion Batteries, depending on the combination of metal and metal Fluoride.

 

The Chloride Ion Battery

The Chloride Ion Battery (CIB) is a logical consequence of the development of the Fluoride Ion Battery. Also here, singly charged negative ions shuttle between cathode and anode where metal chlorides are either formed or reduced to the metal depending on whether the battery is charged or discharged.The group has demonstrated the proof-of-principle and built first cells of this kind. Ionic liquids have been used as elecrolytes at room temperature.

 

The Magnsium Battery

Magnesum as anode material has the potential advantage of a high theoretical volumetric capacity of 3832 mAh/cm3 (Lithium: 2062 mAh/cm3), its electrochemical potential is -2.37 V vs. NHE. Interestingly, Manesium does not form dendrites when electrodeposited and can therefore be used in metallic form, thus avoiding inert host materials like in the Lithium/Graphite system. Magnesium is environmentally benign, safe to handle and of low cost compared to lithium. A particular challenge is the development of an electrolyte for reversible Manesium shuttle. We have developed a non-nucleophilic electrolyte which is synthesized from standard chemicals, shows a high stripping/plating efficiency and has an unprecedented electrochemical stability window of 3.9 V and Coulombic efficiency of >99%. The electrolyte is compatible with a sulfur cathode and it opens the door to the development and application of new high voltage cathodes for Magnesium Batteries.

 

Mg-S Battery

Using a sulfur/CMK-3 composite as cathode, Mg metal as anode and the designed electrolyte in tetraglyme or a binary solvent of glyme and PP14TFSI, the discharge performance and the cyclability of the batteries was considerably improved compared to the first report on Mg/S battery where an HMDS based electrolyte was used in THF solution. The electrochemical conversion of magnesium and sulfur via the formation of a series of intermediate polysulfide MgSx (2<x<8) has been verified by means of various analytical and electrochemical techniques.

 

Interestingly, the discharge occurs close to the theoretical voltage of 1.7 V with the new electrolyte.

 

(Zh. Zhao-Karger, X. Zhao, D. Wang, Th. Diemant, R.J. Behm, and M. Fichtner: Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes. Advanced Energy Materials. Article first published online: 6 OCT 2014. DOI: 10.1002/aenm.201401155)

 

Li-S Battery

A major issue in Metal-Sulfur Batteries is the formation of polysulfide intermediates during the transition from neutral S8 to Li2S and Li2S2 during discharge. The longer polysulfides are soluble in the electrolyte, which leads to gradual dissolution of the cathode, to self-discharge and a multistep voltage profile, due to different subsequent reactions.

 

By extensive XPS studies of the subsurface region we have shown now that a simple, coconut based active carbon with ultramicropores (ca. 0.6 nm diameter) does not allow infiltration of the large S8 rings, nor does it allow formation of soluble polysulfides. Rather, one direct transition from smaller sulfur species to Li sulfide and -disulfide is observed. No polysulfides have been found in the electrolyte and there is only one voltage plateau (M. Helen, M. Anji Reddy, T. Diemant, U. Golla-Schindler, R. J. Behm, and M. Fichtner (2015) submitted)

 

Analytical Tools TERS

Tip Enhanced Raman Spectroscopy is an analytical tool which gives chemical and topographic information in the same time. It is a possibility to analyse surfaces with a resolution on nanometer scale. In battery research it is often not well-­‐known, what is going on at surfaces and interfaces like the Solid Electrolyte Interface. The aim of this project is a better understanding of processes in these layers.

(images will be uploaded shortly)

Labs

  • Chemistry labs with 8 fume hoods
  • 6 Glove-Boxes
  • High-temperature ovens for pyrolysis, ceramic method and CVD
  • Ultrasonic baths
  • Rotating tube furnace
  • 3 planetary ball mills

Equipment

  • Tube furnace with Rotation (>1200°C)
  • 2 high temperature planetary ball mill

Analytics

  • Battery tester with 16, 32 or 4×64 channels (ARBIN BT-2000 INSTRUMENTS and BOLOGIC VMP-3)
  • Electrochem. Impedance spectrometers (EIS): 2x ZAHNER IM-6 Workstation
  • X Ray diffractometer: Stoe Stadip II (Mo und Cu)
  • Fourier-Transform-Infrarotspectrometer (FTIR): PERKIN ELMER Spectum TWO
  • Confocal Raman Microscope: RENISHAW InVIA microscope, TERS in combination with Bruker INNOVA
  • Atomic Force Microscope (AFM): BRUKER INNOVA-SYS in Glove Box
  • Conductometer / pH-meter/ Fluoride measurements: Mettler Toledo Seven
  • Thermo control with Binder cabinets KB-115, Slots for 64 cells per cabinet

(images will be uploaded shortly)

EU-Projekt: LiRichFCC

Forscher aus fünf europäischen Forschungsinstituten (das HIU, die französische Alternative Energie- und Atomenergiekommission CEA, die Technische Universität Dänemark DTU, die schwedische Universität Uppsala und das slowenische Kemijski Institut NKI arbeiten gemeinsam im EU-finanzierten Projekt „LiRichFCC“ Li-Ionen-Batterien zusammen. Auf der Grundlage eines neuen Konzeptes von Li-reichen Salzgesteinsstrukturen lassen sich Energiespeicherdichten über die bisher bekannten System hinaus erhöhen.

 

Das EU-Projekt: LiRichFCC

 

BMBF-Projekt: Mag-S

Das Projekt ist eine Kooperation zwischen dem HIU, dem DLR Stuttgart, der FhG-ISIT, CustomCells GmbH, der El-Cell GmbH und der Schaeffler AG mit dem Ziel, die Magnesium-Sulfur-Technologie auf Demonstrationsebene zu betreiben. Das technische Ziel ist die Herstellung und Prüfung von 20 Ah Mg-S Zellen.

 

EU-Projekt: Hi-C

Titel: „Novel in situ and in operando techniques for characterization of interfaces in electrochemical storage systems“. 8 Partner aus DK, UK, F, D mit assoziierten Partnern aus Korea and USA. Gemeinsam arbeiten die Projektpartner an internen und externen Grenzflächen von Batteriematerialien.

 

Das Projekt Hi-C

 

Projekt Pro ECo

ProEco  ist eine gemeinschafliches Projekt für Nanomaterialien für Anwendungen im Bereich der Energiespeicherung. Partner sind: DTU Energy Conversion, Aarhus University inano, Danish Technological Institute, Haldar Topsoe AS, Topsoe Fuel Cells, MPI für Kolloid und Grenzflächenforschung und KIT.

 

Projekt Pro ECo

 

ERA-NET Projekt: NOVELMAG

Das Projekt beschäftigt sich mit neuen Batteriematerialien basierend auf Magnesium-Nanomaterialien für angewandte, wieder aufladbare Batterien. Partner des Projekts sind: CNRS-ICMP France, KIT Germany, IFE Norway, RAS IPCP Russia, MSU Russia, St. Peterburg Univ. Russia, ISSP Russia

Das ERA.Net RUS Plus

 

Projekthaus e-drive

Das Projekthaus e-drive ist eine strategische Allianz mit Daimler zum Thema Elektromobilität bzw. Elektroantriebe.

 

Die Allianz Projekthaus e-drive

 

Projektpartner: CUSTOMCELLS ®

CUSTOMCELLS® is one of the world’s leading companies in the development of special lithium-ion battery cells. CUSTOMCELLS® – Made in Germany – develops and produces application-specific battery cells from prototypes to small and medium series. On the basis of flexible manufacturing concepts and state-of-the-art research and production facilities, CUSTOMCELLS® guarantees high-tech solutions for special applications and – depending on the customer requirement profile – tailor-made development and production of electrodes, electrolytes, battery cells and battery modules. With access to 14 industrialized electrode technologies, over 250 raw materials in stock and a production facility equipped with state-of-the-art electrode and cell manufacturing machines, CUSTOMCELLS® is one of the leading manufacturers of customized battery cells.

 

Webadresse

Emailadresse

 

A specific filter for this group’s publications is not yet available. Please take a look at „publications“ in the website’s header for now.

Mitglieder
Dr. Ebrahim Abouzari-LotfScientistTel: +49 (0721) 608 28972Mail: Ebrahim.abouzari-lotf(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Montaha AnjassScientistTel: +49 (0731) 50 34316Mail: montaha.anjass(at)uni-ulm.de
ForschungsgruppeSolid State ChemistryMolecular Metal Oxide Composites
Tobias Braun PhD StudentTel: +49 (0731) 50 34222Mail: Tobias.Braun2(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Bosu Babu DasariGuest ScientistTel: +49 (0721) 608 26492Mail: bosu.dasari(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Sirshendu DindaScientistTel: +49 (0731) 50 34225Mail: Sirshendu.Dinda(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Abdelouahab ElKharbachiScientistTel: +49 (0731) 50 34219Mail: abdel.kharbachi(at)kit.edu
ForschungsgruppeSolid State Chemistry
Prof. Dr. Maximilian FichtnerPrincipal InvestigatorTel: +49 (0731) 50 34201
(0721) 608 25340
Mail: m.fichtner(at)kit.edu
ForschungsgruppeSolid State Chemistry
Simon GreinerPhD StudentTel: 34310Mail: simon.greiner(at)uni-ulm.de
ForschungsgruppeSolid State ChemistryMolecular Metal Oxide Composites
Dr. Yang HuScientistTel: +49 (0731) 50 34086Mail: yang.hu(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Guruprakash KarkeraScientistTel: +49 (0731) 50 34221Mail: karkera.guruprakash(at)uni-ulm.de
ForschungsgruppeSolid State Chemistry
Dr. Robert LehmannScientific OfficerTel: +49 (0731) 50 34203Mail: robert.lehmann(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Zhenyou LiScientistTel: +49 (0721) 608 28972Mail: zhenyou.li(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Zhen MengScientistTel: +49 (0721) 608 26485Mail: zhen.meng(at)partner.kit.edu
ForschungsgruppeSolid State Chemistry
Yasaman MoghadamPhD StudentTel: +49 (0731) 50 34212Mail: yasaman.moghadam(at)kit.edu
ForschungsgruppeSolid State Chemistry
Venkateswarlu PamidiPhD StudentTel: +49 (0731) 50 34215Mail: venkateswarlu.pamidi(at)uni-ulm.de
ForschungsgruppeSolid State Chemistry
Dr. Frank PammerScientific OfficerTel: +49 (0731) 50 34203Mail: frank.pammer(at)kit.edu
ForschungsgruppeSolid State Chemistry
Adam ReupertPhD StudentTel: +49 (0721) 608 26482Mail: adam.reupert(at)uni-ulm.de
ForschungsgruppeSolid State Chemistry
Ananyo Roy PhD StudentTel: +49 (0721) 608 28924Mail: ananyo.roy(at)partner.kit.edu
ForschungsgruppeSolid State Chemistry
Shivam TrivediPhD StudentTel: +49 (0731) 50 34224Mail: shivam.trivedi(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Ediga UmeshbabuScientistTel: +49 (0731) 50 34209Mail: ediga.umeshbabu(at)kit.edu
ForschungsgruppeSolid State Chemistry
Katja VetterSecretary of Prof. FichtnerTel: +49 (0731) 50 34020Mail: katja.vetter(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Liping WangScientistTel: +49 (0721) 608 28924Mail: liping.wang(at)kit.edu
ForschungsgruppeSolid State Chemistry
Yanlei XiuPhD StudentTel: +49 (0721) 608 28924Mail: yanlei.xiu(at)kit.edu
ForschungsgruppeSolid State Chemistry
Dr. Zhirong Zhao-KargerPrincipal Investigator/KIT-INTTel: +49 (0721) 608 28908Mail: zhirong.zhao-karger(at)kit.edu
ForschungsgruppeSolid State Chemistry
Forschung

(images will be uploaded shortly)

The Fluoride Ion Battery

In search of new concepts to build batteries with high energy densities, electrochemical cells based on metal fluorides may be promising.

 

We have demonstrated the first reversibly working battery cells based on fluoride shuttle. In secondary fluoride batteries, fluoride anion acts as charge transfer ion between a metal/ metal fluoride pair where it will react with metal or evolve from metal fluoride depending on the flow of current. The theoretical capacity can be several times higher than that of conventional Lithium Ion Batteries, depending on the combination of metal and metal Fluoride.

 

The Chloride Ion Battery

The Chloride Ion Battery (CIB) is a logical consequence of the development of the Fluoride Ion Battery. Also here, singly charged negative ions shuttle between cathode and anode where metal chlorides are either formed or reduced to the metal depending on whether the battery is charged or discharged.The group has demonstrated the proof-of-principle and built first cells of this kind. Ionic liquids have been used as elecrolytes at room temperature.

 

The Magnsium Battery

Magnesum as anode material has the potential advantage of a high theoretical volumetric capacity of 3832 mAh/cm3 (Lithium: 2062 mAh/cm3), its electrochemical potential is -2.37 V vs. NHE. Interestingly, Manesium does not form dendrites when electrodeposited and can therefore be used in metallic form, thus avoiding inert host materials like in the Lithium/Graphite system. Magnesium is environmentally benign, safe to handle and of low cost compared to lithium. A particular challenge is the development of an electrolyte for reversible Manesium shuttle. We have developed a non-nucleophilic electrolyte which is synthesized from standard chemicals, shows a high stripping/plating efficiency and has an unprecedented electrochemical stability window of 3.9 V and Coulombic efficiency of >99%. The electrolyte is compatible with a sulfur cathode and it opens the door to the development and application of new high voltage cathodes for Magnesium Batteries.

 

Mg-S Battery

Using a sulfur/CMK-3 composite as cathode, Mg metal as anode and the designed electrolyte in tetraglyme or a binary solvent of glyme and PP14TFSI, the discharge performance and the cyclability of the batteries was considerably improved compared to the first report on Mg/S battery where an HMDS based electrolyte was used in THF solution. The electrochemical conversion of magnesium and sulfur via the formation of a series of intermediate polysulfide MgSx (2<x<8) has been verified by means of various analytical and electrochemical techniques.

 

Interestingly, the discharge occurs close to the theoretical voltage of 1.7 V with the new electrolyte.

 

(Zh. Zhao-Karger, X. Zhao, D. Wang, Th. Diemant, R.J. Behm, and M. Fichtner: Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes. Advanced Energy Materials. Article first published online: 6 OCT 2014. DOI: 10.1002/aenm.201401155)

 

Li-S Battery

A major issue in Metal-Sulfur Batteries is the formation of polysulfide intermediates during the transition from neutral S8 to Li2S and Li2S2 during discharge. The longer polysulfides are soluble in the electrolyte, which leads to gradual dissolution of the cathode, to self-discharge and a multistep voltage profile, due to different subsequent reactions.

 

By extensive XPS studies of the subsurface region we have shown now that a simple, coconut based active carbon with ultramicropores (ca. 0.6 nm diameter) does not allow infiltration of the large S8 rings, nor does it allow formation of soluble polysulfides. Rather, one direct transition from smaller sulfur species to Li sulfide and -disulfide is observed. No polysulfides have been found in the electrolyte and there is only one voltage plateau (M. Helen, M. Anji Reddy, T. Diemant, U. Golla-Schindler, R. J. Behm, and M. Fichtner (2015) submitted)

 

Analytical Tools TERS

Tip Enhanced Raman Spectroscopy is an analytical tool which gives chemical and topographic information in the same time. It is a possibility to analyse surfaces with a resolution on nanometer scale. In battery research it is often not well-­‐known, what is going on at surfaces and interfaces like the Solid Electrolyte Interface. The aim of this project is a better understanding of processes in these layers.

Equipment

(images will be uploaded shortly)

Labs

  • Chemistry labs with 8 fume hoods
  • 6 Glove-Boxes
  • High-temperature ovens for pyrolysis, ceramic method and CVD
  • Ultrasonic baths
  • Rotating tube furnace
  • 3 planetary ball mills

Equipment

  • Tube furnace with Rotation (>1200°C)
  • 2 high temperature planetary ball mill

Analytics

  • Battery tester with 16, 32 or 4×64 channels (ARBIN BT-2000 INSTRUMENTS and BOLOGIC VMP-3)
  • Electrochem. Impedance spectrometers (EIS): 2x ZAHNER IM-6 Workstation
  • X Ray diffractometer: Stoe Stadip II (Mo und Cu)
  • Fourier-Transform-Infrarotspectrometer (FTIR): PERKIN ELMER Spectum TWO
  • Confocal Raman Microscope: RENISHAW InVIA microscope, TERS in combination with Bruker INNOVA
  • Atomic Force Microscope (AFM): BRUKER INNOVA-SYS in Glove Box
  • Conductometer / pH-meter/ Fluoride measurements: Mettler Toledo Seven
  • Thermo control with Binder cabinets KB-115, Slots for 64 cells per cabinet
Zusammenarbeit

(images will be uploaded shortly)

EU-Projekt: LiRichFCC

Forscher aus fünf europäischen Forschungsinstituten (das HIU, die französische Alternative Energie- und Atomenergiekommission CEA, die Technische Universität Dänemark DTU, die schwedische Universität Uppsala und das slowenische Kemijski Institut NKI arbeiten gemeinsam im EU-finanzierten Projekt „LiRichFCC“ Li-Ionen-Batterien zusammen. Auf der Grundlage eines neuen Konzeptes von Li-reichen Salzgesteinsstrukturen lassen sich Energiespeicherdichten über die bisher bekannten System hinaus erhöhen.

 

Das EU-Projekt: LiRichFCC

 

BMBF-Projekt: Mag-S

Das Projekt ist eine Kooperation zwischen dem HIU, dem DLR Stuttgart, der FhG-ISIT, CustomCells GmbH, der El-Cell GmbH und der Schaeffler AG mit dem Ziel, die Magnesium-Sulfur-Technologie auf Demonstrationsebene zu betreiben. Das technische Ziel ist die Herstellung und Prüfung von 20 Ah Mg-S Zellen.

 

EU-Projekt: Hi-C

Titel: „Novel in situ and in operando techniques for characterization of interfaces in electrochemical storage systems“. 8 Partner aus DK, UK, F, D mit assoziierten Partnern aus Korea and USA. Gemeinsam arbeiten die Projektpartner an internen und externen Grenzflächen von Batteriematerialien.

 

Das Projekt Hi-C

 

Projekt Pro ECo

ProEco  ist eine gemeinschafliches Projekt für Nanomaterialien für Anwendungen im Bereich der Energiespeicherung. Partner sind: DTU Energy Conversion, Aarhus University inano, Danish Technological Institute, Haldar Topsoe AS, Topsoe Fuel Cells, MPI für Kolloid und Grenzflächenforschung und KIT.

 

Projekt Pro ECo

 

ERA-NET Projekt: NOVELMAG

Das Projekt beschäftigt sich mit neuen Batteriematerialien basierend auf Magnesium-Nanomaterialien für angewandte, wieder aufladbare Batterien. Partner des Projekts sind: CNRS-ICMP France, KIT Germany, IFE Norway, RAS IPCP Russia, MSU Russia, St. Peterburg Univ. Russia, ISSP Russia

Das ERA.Net RUS Plus

 

Projekthaus e-drive

Das Projekthaus e-drive ist eine strategische Allianz mit Daimler zum Thema Elektromobilität bzw. Elektroantriebe.

 

Die Allianz Projekthaus e-drive

 

Projektpartner: CUSTOMCELLS ®

CUSTOMCELLS® is one of the world’s leading companies in the development of special lithium-ion battery cells. CUSTOMCELLS® – Made in Germany – develops and produces application-specific battery cells from prototypes to small and medium series. On the basis of flexible manufacturing concepts and state-of-the-art research and production facilities, CUSTOMCELLS® guarantees high-tech solutions for special applications and – depending on the customer requirement profile – tailor-made development and production of electrodes, electrolytes, battery cells and battery modules. With access to 14 industrialized electrode technologies, over 250 raw materials in stock and a production facility equipped with state-of-the-art electrode and cell manufacturing machines, CUSTOMCELLS® is one of the leading manufacturers of customized battery cells.

 

Webadresse

Emailadresse

 

Publikationen

A specific filter for this group’s publications is not yet available. Please take a look at „publications“ in the website’s header for now.

Fakten zur Gruppe

Alles anzeigen Weniger anzeigen