27. Juni 2023
Dr. Zahilia Caban Huertas (✝ 22.06.2023, Ulm)
Dear all,
We find ourselves in the midst of grief about the unexpected passing of Zahilia, a valuable researcher, our colleague and friend.
Zahilia has been with us since April 2022 as postdoctoral researcher, supported by an MSCA Fellowship to investigate solid-state batteries. Since then she has become an essential member of our HIU family.
We will all deeply miss her and keep her in honorable memory. Zahilia and her family are in our thoughts and prayers. Together as HIU, we are wishing her family and friends all the strength and comfort to get through this time of sorrow. We have expressed our sincerest condolences to her sister and family on behalf of all colleagues at HIU, and would like to warmly thank all colleagues who are supporting her family these days.
We are in deep mourning and hope that our sympathy may give her family some comfort – at least a little.
On behalf of all HIU colleagues,
Dominic Bresser
Heribert Wilhelm
Maximilian Fichtner
05. Juni 2023
Zwei Millionen Euro für Forschung an organischen Elektrodenmaterialien: Professorin Birgit Esser erhält Consolidator Grant. Die Chemikerin Prof. Birgit Esser vom Institut für Organische Chemie II und Neue Materialien der Universität Ulm erhält für ihr Projekt „NanOBatt“ einen Consolidator Grant des Europäischen Forschungsrats (ERC) in Höhe von zwei Millionen Euro für fünf Jahre. Die Forscherin ist ebenfalls assoziierte Forschungsgruppenleiterin am Helmholtz-Institut Ulm (HIU). Mit NanOBatt sollen organische Elektrodenmaterialien (OEM) für Batterien der nächsten Generation erforscht werden. Der Schwerpunkt wird darauf liegen, die Porosität von OEM verbessern und damit die Ionendiffusion zu erleichtern. OEM haben viele Vorteile: Sie bestehen aus weithin verfügbaren Elementen, sind mit geringem CO2-Abdruck zugänglich und können leicht recycelt werden. Mit dem ERC Consolidator Grant sollen hervorragende Wissenschaftlerinnen und Wissenschaftler beim Ausbau ihrer Arbeitsgruppen gestärkt und die internationale Sichtbarkeit gefördert werden.
Glückwunsch an Prof. Birgit Esser @Besserchemistry: Die Chemikerin der #uulm erhält einen Consolidator Grant des @ERC_Research in Höhe von 2 Mio. Euro! ?Im Projekt ?NanOBatt?erforscht sie organische Elektrodenmaterialien für Batterien. https://t.co/6sy5PZbVlm *cl/?Eberhardt pic.twitter.com/zwVcIOETzr
— Universität Ulm (@uni_ulm) June 5, 2023
Ob Smartphone oder Elektroauto, kabellose Kopfhörer oder Rasenmäh-Roboter: In vielen elektrischen Geräten stecken Batterien. Und die Nachfrage danach steigt immer weiter. Neue Energiespeicherlösungen werden gebraucht. Mit ihrem Projekt NanoBatt will Prof. Birgit Esser an einem grundlegend neuen Konzept für Organische Elektrodenmaterialien forschen. Die Chemikerin vereint in einzigartiger Weise die dafür notwendige Expertise in organischer Synthesechemie mit Knowhow aus dem Bereich organischer Batterieelektrodenmaterialien. Mit ihrem ganzheitlichen Ansatz will Esser die Lücke zwischen Grundlagenforschung und der Anwendung organischer Materialien schließen.
Porosität der organischen Materialien verbessern
„Das Gebiet der OEM ist im Vergleich zu anorganischen Materialien für Batterien deutlich weniger erforscht“, sagt Esser. Das Problem: Bestehende OEM haben eine mangelhafte Porosität, welche die Diffusion von Gegenionen zu elektroaktiven Stellen behindert oder Redoxprozesse, also die gleichzeitige Abgabe oder Aufnahme von Elektronen, irreversibel macht. Das schränkt ihre Leistung und Anwendbarkeit stark ein. Um die Porosität der organischen Materialien zu verbessern, setzt Esser mit NanOBatt auf sogenannte redoxaktive, konjugierte Nanoreifen. Dabei handelt es sich um reifenförmige Moleküle, deren Elektronen sich nicht an einem festen Punkt aufhalten, sondern sich innerhalb des Reifens bewegen. „Das könnte ein Vorteil sein und die Ladung stabilisieren“, erläutert die Chemikerin. NanOBatt hat zum Ziel, solche Nanoreifen, deren Synthese teils sehr aufwendig ist, herzustellen. Basis dafür sollen beispielsweise Chinone oder Azine sein – Chemikalien, die aktuell aus Erdöl gewonnen werden. „Langfristig kann man schauen, ob man dafür nachwachsende Rohstoffe verwenden kann“, sagt Esser. Die Herausforderung dabei ist, möglichst viel Ladung auf möglichst wenig Molekül zu speichern. Denn: „Im Idealfall will man eine Batterie, die möglichst wenig wiegt und viel Speicherkapazität hat“, so Esser. Auch deshalb ist eine hohe Porosität wichtig: Sie ermöglicht erst dickere Elektroden, die zu einer höheren Kapazität führen – der Voraussetzung für weniger Material am Ladungssammler.
Um zu sehen, ob sich die Porosität verbessert, sollen in NanOBatt außerdem Methoden etabliert werden, mit denen sich der Effekt im Zusammenspiel mit anderen Materialien bei Batterien auch tatsächlich messen lässt. „Die üblicherweise verwendeten Methoden funktionieren in diesem Kontext nicht“, so Esser. Schließlich sollen ausgewählte, redoxaktive Nanoreifen als OEM in alternativen Batteriezellkonfigurationen untersucht werden: in Natrium, Aluminium-, Magnesium- und rein organischen Batterien.
Prof. Birgit Esser wechselte 2022 von der Universität Freiburg an die Uni Ulm. Zuvor forschte sie an der Universität Bonn und am MIT in den USA. Esser studierte und promovierte in Heidelberg. Sie ist Mitglied im Exzellenzcluster POLiS (Post Lithium Storage Cluster of Excellence), wo Wissenschaftlerinnen und Wissenschaftler neue Batteriematerialien und Technologiekonzepte für eine leistungsfähige und nachhaltige Speicherung elektrischer Energie entwickeln. Außerdem ist Esser Mitglied der Forschungsplattform CELEST und assoziierte Gruppenleiterin am Helmholtz-Institut Ulm.
Über den ERC Consolidator Grant
ERC Consolidator Grants richten sich an exzellente Forschende in der Konsolidierungsphase. Mit den Fördermitteln sollen sie vor allem beim Ausbau ihrer unabhängigen Arbeitsgruppe und bei der Steigerung ihrer internationalen Sichtbarkeit unterstützt werden. Typischerweise bewerben sich vielversprechende Wissenschaftlerinnen und Wissenschaftler aller Fachrichtungen sieben bis zwölf Jahre nach ihrer Promotion. Über die Qualität der eingereichten Anträge entscheidet eine internationale Jury, beraten durch externe Expertinnen und Experten. Für ihre Projekte erhalten die ausgewählten Forschenden bis zu zwei Millionen Euro für fünf Jahre. 2022 sind 2222 Anträge eingereicht worden. Davon wurden 321 Forschende aus 21 Ländern für einen ERC Consolidator Grant ausgewählt. Einziges Kriterium ist die wissenschaftliche Exzellenz der Forschenden und des vorgeschlagenen Projektes.
Weitere Informationen:
Prof. Birgit Esser, Institut für Organische Chemie II und Neue Materialien, Mail: birgit.esser@uni-ulm.de, Website: www.esserlab.com
Text und Medienkontakt:
Christine Liebhardt
Fotos: Foto Elvira Eberhardt
Weiterführende Quelle:
https://www.uni-ulm.de/nawi/naturwissenschaften/nawi-detailseiten/news-detail/article/zwei-millionen-euro-fuer-forschung-an-organischen-elektrodenmaterialien/
24. Mai 2023
Das HIU hat Mai ein eigenes Transmissions-Elektronen-Mikroskop (TEM) in Betrieb genommen. Diese Mikroskope werden typischerweise zum Abbilden dünner Proben mit sehr hoher Auflösung verwendet. Dabei wird ein Elektronenstrahl mit hoher Beschleunigungsspannung von oben auf die Probe fokussiert. Ein Detektor, der unter der Probe platziert ist, registriert die transmittierten Elektronen. Daraus lassen sich Rückschlüsse über die Wechselwirkung zwischen Elektronen und Probe ziehen. Die Forschenden erhalten sehr lokale Informationen über das Material.
Dr. Simon Fleischmann betreut mit seiner Forschungsgruppe „Elektrochemische Grenzflächen im Nanoconfinement“ das neue Gerät. Wir fragen ihn nach Geräte-Details.
Herr Dr. Fleischmann, können Sie uns ein paar technische Daten zum TEM am HIU geben?
Dr. Fleischmann: Das Gerät ist mit einer sog. „high brightness“ Schottky-Feldemissionskathode mit 200 kV Beschleunigungsspannung ausgestattet, die emittierten Elektronen haben also eine Energie von 200 keV. Damit kann man eine sehr hohe Auflösung von etwas über 0,1 nm erreichen, was in etwa der Bindungslänge von Atomen entspricht. Das Mikroskop ist außerdem mit zwei großflächigen Detektoren zur energiedispersiven Röntgenspektroskopie (EDX), sowie mit einem Detektor zur Elektronenenergieverlustspektroskopie (EELS) ausgestattet.
Foto: Neues Transmissionselektronenmikroskop am HIU.
Wobei hilft das Gerät Ihnen in der Forschung weiter?
Dr. Fleischmann: Viele unserer konventionellen Untersuchungsmethoden geben uns statistische Informationen über die Gesamtheit einer Probe, aber wir wissen nicht, wie die Probe z.B. an einer ganz bestimmten Stelle aussieht. Im Gegensatz dazu kann man mit dem TEM strukturelle und chemische Informationen mit extrem hoher Ortsauflösung erhalten, man kann sich sozusagen die lokale Umgebung von einzelnen Atomen an einer speziell interessanten Stelle der Probe anschauen. Zu betonen ist auch, dass das TEM nicht nur „abbilden“ kann, sondern man kann mit ähnlicher Ortsauflösung auch Diffraktion und Spektroskopie durchführen.
Scientists at HIU put a ? transmission electron microscope (#TEM) into operation. For technical data, check our interview with @SFleischmann_ whose group will train ? researchers working with the device. @KITKarlsruhe @CELEST_18 @ClusterPolis @uni_ulm https://t.co/c7T8qBi4rd
— Helmholtz Institute Ulm ???? (@HelmholtzUlm) May 24, 2023
Welche speziellen Materialien (für welche Anwendungen?) erforschen Sie mit dem TEM?
Dr. Fleischmann: Wir werden das TEM hauptsächlich für die Untersuchung von neuartigen Elektroden- oder Festelektrolytmaterialien mit unbekannter lokaler Struktur sowie zur Grenzflächencharakterisierung in elektrochemischen Systemen einsetzen. Man kann einen hohen Erkenntnisgewinn erzielen, wenn man beispielsweise versteht, wo und wie Ionen oder Moleküle in ein kristallines Elektrodenmaterial eingebaut werden. Andererseits kann man auch hochlokalisierte Informationen über Grenzflächen und Interphasen erhalten, die während der Nutzung der Testzellen an den Elektrodenoberflächen entstanden sind. Wir sprechen also speziell über Strukturaufklärung von Materialien mit manipulierter Kristallstruktur, z.B. die „Nanoconfinement-Materialien“ meiner Gruppe, Festkörperelektrolyte, und die Erforschung von Interphasen wie der „solid electrolyte interphase“ (SEI).
Besonders hervorzuheben sind auch die speziell angeschafften Probenhalter (sog. Kryo-Halter), mit denen die hochempfindlichen und reaktiven Proben während der Messung mit flüssigem Stickstoff „eingefroren“ werden. Dadurch kann Probenschädigung während des Messens weitgehend vermieden werden, so dass man die ursprüngliche Struktur studieren kann.
Foto: Einsetzen des TEM-Probenhalters. Dieser verfügt über einen Flüssigstickstofftank, wodurch die Probe während der Messung gekühlt wird.
Wie wichtig/kompliziert ist die Anwendungssoftware?
Dr. Fleischmann: Gerade aufgrund der vielfältigen Techniken, die am TEM möglich sind („konventionelles“ TEM, Raster-TEM, Diffraktion, Spektroskopie, etc.), ist die Software relativ komplex. Das Nutzerinterface ist jedoch ziemlich intuitiv gestaltet und kann nach Einweisung und Training gut bedient werden.
Wie viel ist so ein Mikroskop wert? Wie lange war die Anschaffung geplant?
Dr. Fleischmann: Bei TEMs gibt es hohe Preisunterschiede zwischen den Modellen, da bewegt man sich am unteren Ende bei einigen Hunderttausend, am oberen Ende können es aber auch einige Millionen Euro sein. Das richtet sich hauptsächlich nach der erreichbaren Messauflösung, wofür die „Qualität“ der emittierten Elektronen (Energie und Energiebreite) und speziell auch deren Fokussierung auf die Probe entscheidend sind. Die Geräte sind außerdem hoch individualisierbar in Sachen Ausstattung, man kauft sie nicht „von der Stange“. Deshalb musste sehr genau geplant und abgewogen werden, welches Gerät mit welcher Ausstattung für Anwendungen am HIU passt. Die Anschaffung hat dementsprechend viel Zeit in Anspruch genommen, insgesamt waren wir etwa zwei Jahre mit der Planung, Bestellung und dem Aufbau beschäftigt.
22. Mai 2023
Dr. Anjass, Forschungsgruppenleiterin am Helmholtz-Institut Ulm und wissenschaftliche Mitarbeiterin im Exzellenzcluster POLiS, wurde als Stipendiatin der Christiane Nüsslein-Volhard-Stiftung ausgewählt. Sie erhält für ein Jahr eine monatliche Förderung von 500 Euro.
Nach ihrem Bachelorabschluss an der Universität Birzeit und einer drauffolgenden Tätigkeit als Lehrassistentin, emigrierte die gebürtige Palästinenserin 2013 nach Ulm. Seit Juli 2020 leitet Dr. Anjass eine Forschungsgruppe am Helmholtz-Institut Ulm, die sich auf die Entwicklung neuartiger nanostrukturierter Materialien und deren Einsatz in Anwendungsbereichen von globaler sozioökonomischer Relevanz wie Energieumwandlung/-speicherung oder Katalyse fokussiert.
Congrats! ? Dr. Montaha Anjass, Group Leader at HIU & research associate at @ClusterPolis was selected for a scholarship by the Christiane Nüsslein-Volhard-Foundation. Keep up the great work! @KITKarlsruhe @uni_ulm @CELEST_18 @DLR_en https://t.co/T9m2QE3grq pic.twitter.com/CxrdXVl7iq
— Helmholtz Institute Ulm ???? (@HelmholtzUlm) May 22, 2023
Die Christiane Nüsslein-Volhard-Stiftung wurde 2004 gegründet und unterstützt talentierte junge Wissenschaftlerinnen mit Kindern, um ihnen den Freiraum und die Mobilität, die sie für eine wissenschaftliche Karriere benötigen, zu ermöglichen. Es werden Mittel zur Verfügung gestellt, die eine Entlastung im Haushalt und bei der Kinderbetreuung ermöglichen sollen.
Weiterführender Link:
https://cnv-stiftung.de/stipendiatinnen/stipendiatinnen-2023
27. April 2023
In diesem Jahr beteiligte sich das Helmholtz-Institut Ulm gemeinsam mit dem Exzellenzcluster POLiS am Girls’Day der Universität Ulm. Der Aktionstag soll Mädchen und Frauen motivieren, technische und naturwissenschaftliche Berufe zu ergreifen. Für die Ulmer Batterieforschung bietet es die Gelegenheit, Karrierewege in typischen „Männerberufen“ (Chemie, Physik, Maschinenbau, etc.) auch Mädchen und jungen Frauen zu präsentieren.
Aufgepasst, Schülerinnen und Schüler: Noch bis 20. April könnt ihr euch für die Angebote des #GirlsDay und #BoysDay am 27. April an der #uulm, @UniklinikUlm und RKU anmelden. Alle Infos: https://t.co/4bxiCE9HyO *cl/Foto: Daniela Stang pic.twitter.com/lJVRjXw7W4
— Universität Ulm (@uni_ulm) April 17, 2023
Vier Schülerinnen besuchten die POLiS-Forschungslabore in der Lise-Meitner-Straße im Ulmer SciencePark. Dort zeigte Doktorandin Monika Vogler die neuen MAP-Anlagen („Materials-Acceleration-Platform“), bei denen Batteriematerialien per Hochdurchsatzforschung vollautomatisiert per Robotik erforscht und optimiert werden.
Die Jugendlichen zeigten sich hochinteressiert und konnten in einer Fragerunde Frau Prof. Dr. Birgit Esser nach Berufschancen innerhalb der Batterieforschung und der Wissenschaft befragen.
Weiterführende Links:
https://www.girls-day.de/
19. April 2023
Forschende des KIT und der EnBW haben ein Lithium-Ionen-Sieb für geothermale Solen gezeigt: Lithium-Gewinnung kann Stromerzeugung und Wärmebereitstellung ergänzen. Geothermie ermöglicht nicht nur eine nachhaltige Strom- und Wärmeversorgung, sondern nebenbei auch eine regionale Lithium-Gewinnung. Forschende des Karlsruher Instituts für Technologie (KIT) und der EnBW haben ein Lithium-Ionen-Sieb aus einem Lithium-Mangan-Oxid hergestellt und zur Adsorption von Lithium aus geothermalen Solen eingesetzt. Das Nutzen heimischer Lithium-Quellen kann künftig dazu beitragen, dem steigenden Bedarf an dem als Energiespeichermaterial unverzichtbaren Leichtmetall zu begegnen. Die Forschenden berichteten in der Zeitschrift Energy Advances, die die Arbeit nun als eines der „Outstanding Paper 2022“ würdigt. (DOI: 10.1039/d2ya00099g)
“Depending on geol. origin ♨️ geothermal brines contain 0.1-500 mg #lithium/liter,” says HIU scientist Prof. Ehrenberg. Li concentrations of up to 240 mg/l were measured in North German Basin & up to 200 mg in Upper Rhine Graben. @KITKarlsruhe @ClusterPolis https://t.co/FSnkKePBi0
— Helmholtz Institute Ulm ???? (@HelmholtzUlm) April 24, 2023
Eine nachhaltige Energieversorgung erfordert leistungsfähige Energiespeicher. Dabei ist Lithium nicht mehr wegzudenken – das Leichtmetall steckt in Batterien vieler technischer Geräte und Fahrzeuge, von Smartphones über Notebooks bis hin zu Elektroautos. In den vergangenen Jahren ist die Nachfrage weltweit stark gestiegen. Europa ist bis jetzt auf Importe angewiesen. Allerdings gibt es auch europäische Lagerstätten für Lithium, nämlich Thermalwässer in einigen Kilometern Tiefe. Sie enthalten hohe Konzentrationen an Lithium-Ionen. So lassen sich Geothermieanlagen, die heißes Wasser aus der Tiefe fördern, nicht nur zur nachhaltigen Strom- und Wärmeversorgung, sondern nebenbei auch zur umweltverträglichen regionalen Lithium-Gewinnung nutzen.
Hohe Lithium-Konzentrationen im Norddeutschen Becken und im Oberrheingraben
„Je nach geologischem Ursprung enthalten geothermale Solen zwischen 0,1 und 500 Milligramm Lithium pro Liter“, erklärt Professor Helmut Ehrenberg, Leiter des Instituts für Angewandte Materialien – Energiespeichersysteme (IAM-ESS) des KIT. So wurden im Norddeutschen Becken Lithium-Konzentrationen bis zu 240 Milligramm pro Liter gemessen, im Oberrheingraben bis zu 200 Milligramm pro Liter. „Die Gewinnung von Lithium aus geothermalen Solen stellt allerdings eine große Herausforderung dar, weil die Lithium-Ionen mit vielen anderen Ionen konkurrieren“, erläutert Ehrenberg.
Eine vielversprechende Möglichkeit, Lithium aus heißem Tiefenwasser zu gewinnen, ist die Adsorption, das heißt die Anlagerung von Lithium-Ionen an der Oberfläche von porösen Feststoffen. Dazu bedarf es geeigneter Adsorbentien, die nicht nur lithium-selektiv sind, sondern sich auch umweltverträglich herstellen, einsetzen und entsorgen lassen, sowie geeigneter Desorptionslösungen, um die Lithium-Ionen wieder vom Adsorbens zu lösen. Forschende vom IAM-ESS des KIT haben zusammen mit dem Bereich Forschung & Entwicklung der EnBW Energie Baden-Württemberg AG sowie Wissenschaftlerinnen und Wissenschaftlern vom Fraunhofer-Institut für Chemische Technologie ICT und der Hydrosion GmbH ein Lithium-Ionen-Sieb hergestellt und im Labor getestet. Darüber berichten sie in der Zeitschrift Energy Advances. Ihre Publikation wurde vom Herausgeberteam in die Sammlung „Energy Advances – 2022 Outstanding Papers“ aufgenommen.
Lithium-Ionen-Sieb mit spezieller Kristallstruktur
Das vorgestellte Lithium-Ionen-Sieb basiert auf einem Lithium-Mangan-Oxid mit einer speziellen, als Spinell bezeichneten Kristallstruktur. Die Forschenden stellten es über hydrothermale Synthese her, bei der Substanzen aus wässrigen Lösungen bei hohen Temperaturen und Drücken kristallisieren. In Labortests verwendete das Forschungsteam diese Substanz, um Lithium-Ionen aus geothermaler Sole zu adsorbieren. Die Sole stammt aus der von der EnBW betriebenen Geothermieanlage Bruchsal, die zwischen Karlsruhe und Heidelberg im Oberrheingraben liegt. Dort untersucht der Bereich Forschung & Entwicklung der EnBW in verschiedenen Projekten die Lithiumförderung aus Thermalwasser.
Für die in Energy Advances publizierte Arbeit testeten die Forschenden anschließend an die Adsorption von Lithium verschiedene Desorptionslösungen, wobei Essigsäure die besten Ergebnisse brachte, was Lithium-Gewinnung und Adsorbens-Erhaltung betrifft. Allerdings kam es mit allen getesteten Desorptionslösungen, besonders mit Essigsäure, zu einer Anreicherung des Lithium-Ionen-Siebs mit konkurrierenden Ionen. Dies ist auf den hohen Mineralgehalt der Sole in Bruchsal zurückzuführen. Die Anreicherung mit konkurrierenden Ionen kann die Adsorptionskapazität für Lithium verringern.
Die weitere Forschung steht nun vor den Herausforderungen, das Lithium-Ionen-Sieb so weiterzuentwickeln, dass es sich einfacher handhaben lässt und seine Adsorptionskapazität im Prozess nur geringfügig beeinträchtigt wird, sowie das Verfahren vom Labor- zum Pilotmaßstab hochzuskalieren. Dann kann die Lithium-Gewinnung aus geothermalen Solen künftig den Aufbau einer europäischen Lithium-Versorgung unterstützen.
Über das KIT
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 800 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.
Originalpublikation (Open Access)
Laura Herrmann, Helmut Ehrenberg, Magdalena Graczyk-Zajac, Elif Kaymakci, Thomas Kölbel, Lena Kölbel and Jens Tübke: Lithium recovery from geothermal brine – an investigation into the desorption of lithium ions using manganese oxide adsorbents. Energy Advances, 2022. DOI: 10.1039/d2ya00099g
Weiterführende Links
https://www.kit.edu/kit/pi_2023_028_energiespeichermaterialien-aus-heissem-tiefenwasser-lasst-sich-lithium-gewinnen.php
https://pubs.rsc.org/en/content/articlelanding/2022/YA/D2YA00099G
https://www.materials.kit.edu/
https://www.energie.kit.edu/
18. April 2023
Der Ulmer Exzellenzcluster POLiS vom Helmholtz-Institut Ulm präsentierte sich gemeinsam mit der Forschungsplattform CELEST vom 17. bis 21. April auf einem Stand am Baden-Württemberg Bereich auf der diesjährigen Hannover Messe. Thematische Schwerpunkte der Messe sind in diesem Jahr CO2-neutrale Produktion, Energiemanagement, KI und Wasserstoff.
Close collaboration and communication with long-standing industry partners of CELEST members enable rapid technology transfer of the innovative findings of CELEST members. Come visit our booth at @hannover_messe and meet our Technology Transfer Manager. pic.twitter.com/B5EyjkU3W6
— CELEST (@CELEST_18) April 20, 2023
Die Hannover Messe (HM) ist mit 250.000 Besuchern eine der weltweit größten Fachmessen, die sich dem Thema Industrieentwicklung widmet. Sie wird von der Deutschen Messe AG veranstaltet und findet auf dem Messegelände in Hannover statt. Dort stellen 6.500 Firmen und Organisationen ihre Produkte und Entwicklungen aus.
A little behind the scenes impression of an interview with Stephan Hensel and @MaxFichtner at @hannover_messe which will be released soon. Stay tuned for more information!@ClusterPolis @HelmholtzUlm @uni_ulm @KITKarlsruhe @CELEST_18 pic.twitter.com/AaeSQ7fkYF
— CELEST (@CELEST_18) April 18, 2023
Weiterführende Links:
https://www.hannovermesse.de/de/
17. April 2023
Aufgrund der wachsenden Elektromobilität werden Lithium-Ionen-Batterien (LIB) in immer größerem Maßstab produziert, was zu einer großen Kostenreduktion und neuen Möglichkeiten für deren Einsatz in Energiespeichern auf Netz- und/oder Haushaltsebene führt. Bis 2040 wird erwartet, dass die Anzahl der Elektrofahrzeuge um zwei bis drei Größenordnungen zunehmen wird und die stationäre Speicherung bis zu 1.300 GWh erreichen kann.
Dies führt zu Bedenken hinsichtlich der zukünftigen und langfristigen Verfügbarkeit und Kosten kritischer Rohstoffe (insbesondere Kobalt, Nickel, Kupfer und Lithium), die in LIB eingesetzt werden. Obwohl LIB hervorragend für die Anwendung in der Elektromobilität geeignet sind, benötigen Deutschland und Europa zusätzlich neue zuverlässige, nachhaltige und kostengünstige Batterien für die stationäre Speicherung. In einem solchen Szenario sind Natrium-Ionen-Batterien mit wässrigen Elektrolyten eine attraktive Alternative.
?? HIU coordinates @BMBF_Bund financed project „#NaSS“ #aqueous #sodium #batteries ? for cost-effective & #sustainable stationary #storage ? Aiming at innovative #rechargeable aqu. Na-ion #cells @KITKarlsruhe @uni_ulm @fz_juelich @SCHOTT_AG @Qcells_EU https://t.co/IoBVKXOnso pic.twitter.com/oUbf80XHic
— Helmholtz Institute Ulm ???? (@HelmholtzUlm) April 17, 2023
Das Helmholtz-Institut Ulm des Karlsruher Instituts für Technologie koordiniert das neue Forschungs¬projekt „NaSS“ (Wässrige Natriumbatterien für kostengünstige und nachhaltige Stationäre EnergieSpeicherung, FKZ 03XP0490), das vom BMBF im Rahmen des Programms Batterie 2020 Transfer finanziert wird. Das Projekt zielt darauf ab, eine neuartige wiederaufladbare wässrige Na-Ionen-Zellenchemie zu demonstrieren, die auf unkritischen Rohstoffen basiert.
Der ganzheitliche Ansatz des Projekts umfasst die Modellierung, Synthese und Charakterisierung neuer Materialien sowie deren Validierung in Prototypzellen. In Zusammenarbeit mit dem Projektpartner Forschungszentrum Jülich werden neuartige gemischtleitende Elektrodenmaterialien auf Basis von gut verfügbaren Metallbestandteilen entwickelt und getestet. Diese werden es ermöglichen, das verbesserte Stabilitätsfenster der Wasser-in-Salz-Elektrolyte, die aus nicht fluorierten, kostengünstigen Natriumsalzen bestehen, voll auszunutzen. Schließlich wird das erworbene Know-how für die Herstellung sehr dicker Elektroden mit hoher Flächenkapazität genutzt, die in einem kleinen Demonstrationsprototyp im Labormaßstab eingesetzt werden sollen.
Als Ergebnis des Projekts soll neben der funktionierenden Na-Ionen-Niedertemperatur-Batterie eine industrialisierbare, technologische Prozesskette vom Material bis zur Batteriezelle gemeinsam mit dem Industriebeirat (Schott AG, BMZ GmbH und Hanwha Q CELLS GmbH) entwickelt werden, für einen innovativen und umweltfreundlichen stationären Energiespeicher „Made in Germany“.
11. April 2023
Lithium-Ionen-Batterien: Neues, umweltfreundliches Verfahren für die industrielle Herstellung von nickelreichen Kathoden: Das ZSW (Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg), ein Partner-Institut des HIU, produziert wasserbasierte Elektroden und Zellen im Pilotmaßstab.
Heutige Hochleistungs-Lithium-Ionen-Batterien bestehen ausnahmslos aus Materialien mit einem großen Nickelanteil in der Kathodenmasse, um die Energiedichte zu erhöhen. In der Herstellung kommen dabei giftige Lösungsmittel und fluorhaltige Chemikalien zum Einsatz. Das ZSW hat nun die industrielle Produktion der Kathoden mit umweltfreundlichen und kostengünstigen Alternativen auf den Weg gebracht: Die Forschenden in Ulm ersetzten das giftige Lösungsmittel NMP durch Wasser und fanden einen Ersatz für fluorhaltige Binder. Anschließend gelang die Herstellung der nickelreichen Kathoden mit hoher spezifischer Energie und Langlebigkeit im produktionsnahen Pilotmaßstab. Die so hergestellten Elektroden wurden in Rundzellen vom Typ 21700 verbaut. Nach 1.000 Lade-/Entladezyklen wiesen sie noch 80 Prozent der Anfangskapazität auf und sind damit für den Einsatz in Batteriefahrzeugen geeignet.
HIU’s partner institute ZSW now produces water-based #electrodes and #cells on a pilot scale: #Lithium–#ion #batteries ? New eco-friendly process for mass-manufacturing nickel-rich #cathodes ? @KITKarlsruhe @CELEST_18 @ClusterPolis @EERA_SET https://t.co/mZwdOGeScf pic.twitter.com/pDh2MmQLbl
— Helmholtz Institute Ulm ???? (@HelmholtzUlm) April 12, 2023
In den vergangenen Jahren gab es im Labormaßstab beachtliche Fortschritte bei der wasserbasierten Herstellung von Elektroden, die nickelreiche Aktivmaterialien enthalten. Einen Nachweis der Machbarkeit in einem produktionsnahen Maßstab gab es jedoch noch nicht. Dies ist dem ZSW nun gelungen.
„Unsere Arbeiten sollen die Herstellung von Elektroden in Lithium-Ionen-Batterien verbessern und umweltfreundlich machen, ohne die Leistung der Batterien zu beeinträchtigen“, so Prof. Dr. Markus Hölzle, Leiter des ZSW Geschäftsbereich in Ulm. „Dabei spielt die Substitution von giftigen Lösungsmitteln und biologisch nicht abbaubaren fluorhaltigen Chemikalien eine wichtige Rolle.“
Kostengünstigen und industrietauglichen Prozess entwickelt
Im Rahmen der Forschungsarbeiten hat das ZSW das Standard-Lösemittel NMP sowie das Binder-Gemisch PVDF mit einer wässrigen Formulierung ersetzt. Dadurch werden neben den positiven ökologischen Aspekten auch die Kosten bei der Zellfertigung gesenkt. Startpunkt waren eigene Arbeiten im Milliliter-Maßstab.
Nun konnten die Forschenden erstmals erfolgreich auch Elektroden von rund 100 Meter Länge herstellen. Hierzu wurden die vorentwickelten Materialien im Kilogramm-Maßstab eingesetzt. Dieser sogenannte Pilotmaßstab gilt als Schlüsselschritt bei der Übertragung von Labor (Milliliter) in die großtechnische Anwendung (Kubikmeter bzw. Tonnen). Das ZSW konnte mit den 100 Meter langen Elektrodenbändern auch erstmalig vollwertige zylindrische Batteriezellen des Formats 21700 produzieren. Dieses Zellformat setzt etwa der Autobauer Tesla in seinem Model 3 ein. Diese Batterien sind aber auch für den Einsatz im E-Bike geeignet. Die Übertragung des Prozesses auf weitere Zellformate wird folgen.
Die mit dem neuen Verfahren hergestellten Batterien beinhalten ein hochaktives Kathodenmaterial mit 83 Gewichtsprozent Nickel und auf der Gegenseite, dem Minuspol beziehungsweise der Anode, Graphit. Die Zellen konnten erfolgreich bei 25 Grad Celsius 1.000-mal geladen und entladen werden, bevor sie den Energieinhalt von 80 Prozent unterschritten. Ausgedrückt in Kilometern würde dies bei heute typischen Batteriegrößen in Elektrofahrzeugen mindestens 200.000 Kilometern entsprechen.
„Mit unserem neuen Produktionsverfahren verringern wir den ökologischen Fußabdruck von Lithium-Ionen-Batterien deutlich“ ergänzt Dr. Margret Wohlfarth-Mehrens, die als Fachgebietsleiterin für die Arbeiten verantwortlich war und ebenfalls eine Forschungsgruppe am HIU leitet. „Nachdem bei den Anoden bereits seit vielen Jahren auch im industriellen Maßstab mit Wasser als Lösungsmittel gearbeitet wird, haben wir das nun auch bei den Kathodenmaterialien geschafft. Der Einsatz von Wasser ermöglichet neben dem Wegfall von giftigen Lösungsmitteln auch die Nutzung von nichtfluorierten Bindern, was das Recycling von Batterien deutlich vereinfacht.“
Lithium-Ionen-Batterien sind der zentrale Baustein für den Wandel hin zur Elektromobilität. Ihre Performance wird fast ausschließlich von den verbauten Materialien bestimmt. Um Innovationen in den Markt zu bringen, müssen Entwicklungen aus dem Labormaßstab in den Pilotmaßstab skaliert werden. Von Pilotmaßstab spricht die Wissenschaft dann, wenn alle Prozessschritte seriennahe Anforderungen erfüllen. Die Arbeiten erfolgten im Rahmen des vom Bundesministerium für Bildung und Forschung geförderten Projektes DigiBatt Pro 4.0.
Über das ZSW
Das Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) gehört zu den führenden Instituten für angewandte Forschung auf den Gebieten Photovoltaik, regenerative Kraftstoffe, Batterietechnik und Brennstoffzellen sowie Energiesystemanalyse. An den drei ZSW-Standorten Stuttgart, Ulm und Widderstall sind derzeit rund 330 Wissenschaftler, Ingenieure und Techniker beschäftigt. Hinzu kommen 100 wissenschaftliche und studentische Hilfskräfte. Das ZSW ist Mitglied der Innovationsallianz Baden-Württemberg (innBW), einem Zusammenschluss von 12 außeruniversitären, wirtschaftsnahen Forschungsinstituten.
Weiterführende Information:
Foto: Vom ZSW hergestellte Batterieprototypen im 21700-Format mit wässrig beschichteten nickelreichen Kathoden.
30. März 2023
Immer wieder sind Wirtschaftsvertreter und Repräsentanten verschiedenster Industrien zu Gast am HIU. Meist geht es dabei um wissenschaftliche Projekte und einen Informationsaustausch rund um elektrochemische Energiespeicher, Batterien oder neue Konzepte zu Energiewandlung und -speicherung.
?Industry Perspectives for ?? Sodium-Ion #Batteries? Last week an @austria_in_de #Advantage #Austria delegation of business representatives visited HIU, ZSW and KIT ? We hope you enjoyed your #battery journey! @verbundag @KITKarlsruhe @WKOe @ClusterPolis @CELEST_18 pic.twitter.com/TcKhULxWoV
— Helmholtz Institute Ulm ???? (@HelmholtzUlm) April 3, 2023
Am 30. März besuchten rund ein Dutzend österreichische Vertreterinnen und Vertreter das HIU, um sich speziell über den aktuellen Stand von Natrium-Ionen-Batterien zu informieren. Dr. Dominic Bresser, Forschungsgruppenleiter am HIU, hielt einen Vortrag zu unterschiedlichsten Variationen der Batteriechemie: Dabei unterstrich der Wissenschaftler: „Es gibt nicht nur eine einzige Form der Natrium-Ionen-Batterie. Genauso wenig wie es nur eine einzige Zellchemie für Lithium-Ionen-Batterien gibt“. Elektroden- bzw. Elektrolytmaterialien können dabei laut Dr. Bresser unterschiedlichste Charakterika aufweisen: Natrium-Ionen-Batterien bestehen größtenteils aus Materialien, die als verfügbar, besonders preiswert, leistungsstark und gleichzeitig langlebig beschrieben werden. Deshalb gelten diese Batterien auch als nachhaltig. Schon in diesem Jahr rechnet Dr. Bresser mit einem industriellen Hochfahren der Natriumbatterie-Produktion.
Der Innovationsbeauftragte Franz Nickl der Handelsabteilung des Österreichischen Generalkonsulats in München hatte die Delegation zusammengebracht. Die Gruppe war durch „Advantage Austria“ zusammengekommen, der Wirtschaftsförderungsorganisation der Wirtschaftskammer Österreichs. Die Delegation besuchte ebenfalls das „E-Lab“ des Zentrums für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) sowie das „Batterietechnicum“ des Karlsruher Instituts für Technologie (KIT). Beide Einrichtungen sind Gründungsmitglieder des HIU.
Weiterführende Information:
Advantage Austria (Außenwirtschaftsorganisation der Wirtschaftskammer Österreich)