HIU-Forschende entwickeln rekordverdächtige Lithium-Metall-Zelle

12. August 2021

Nickelreiche Kathode und ionischer Flüssigelektrolyt ermöglichen extrem hohe Energiedichte bei guter Stabilität – Forschende berichten im Magazin Joule

Eine extrem hohe Energiedichte von 560 Wattstunden pro Kilogramm – bezogen auf das Gesamtgewicht der Aktivmaterialien – bei bemerkenswert guter Stabilität bietet eine neuartige Lithium-Metall-Batterie. Dafür haben Forschende am vom Karlsruher Institut für Technologie (KIT) in Kooperation mit der Universität Ulm gegründeten Helmholtz-Institut Ulm (HIU) eine vielversprechende Kombination aus Kathode und Elektrolyt eingesetzt: Die nickelreiche Kathode erlaubt, viel Energie pro Masse zu speichern, der ionische Flüssigelektrolyt sorgt dafür, dass die Kapazität über viele Ladezyklen weitestgehend erhalten bleibt. Über die rekordverdächtige Lithium-Metall-Batterie berichtet das Team im Magazin Joule (DOI: 10.1016/j.joule.2021.06.014).
 

Derzeit stellen Lithium-Ionen-Batterien die gängigste Lösung für die mobile Stromversorgung dar. Die Technologie stößt jedoch bei manchen Anforderungen an ihre Grenzen. Dies gilt besonders für die Elektromobilität, bei der leichte, kompakte Fahrzeuge mit hohen Reichweiten gefragt sind. Als Alternative bieten sich Lithium-Metall-Batterien an: Sie zeichnen sich durch eine hohe Energiedichte aus, das heißt, sie speichern viel Energie pro Masse bzw. Volumen. Doch ihre Stabilität stellt eine Herausforderung dar – weil die Elektrodenmaterialien mit gewöhnlichen Elektrolytsystemen reagieren.
 

Mit dem ionischen Flüssigelektrolyten ILE (rechts) lassen sich Strukturveränderungen an der nickelreichen Kathode NCM88 weitgehend vermeiden; die Kapazität der Batterie bleibt über 1 000 Ladezyklen zu 88 Prozent erhalten. (Abbildung: Fanglin Wu und Dr. Matthias Künzel, KIT/HIU)
Mit dem ionischen Flüssigelektrolyten ILE (rechts) lassen sich Strukturveränderungen an der nickelreichen Kathode NCM88 weitgehend vermeiden; die Kapazität der Batterie bleibt über 1 000 Ladezyklen zu 88 Prozent erhalten. (Abbildung: Fanglin Wu und Dr. Matthias Künzel, KIT/HIU)

Eine Lösung haben nun Forschende am Karlsruher Institut für Technologie (KIT) und am Helmholtz-Institut Ulm – Elektrochemische Energiespeicherung (HIU) gefunden. Wie sie im Magazin Joule berichten, setzen sie eine vielversprechende neue Materialkombination ein. Sie verwenden eine kobaltarme, nickelreiche Schichtkathode (NCM88). Diese bietet eine hohe Energiedichte. Mit dem üblicherweise verwendeten kommerziell erhältlichen organischen Elektrolyten (LP30) lässt die Stabilität allerdings stark zu wünschen übrig. Die Speicherkapazität sinkt mit steigender Zahl der Ladezyklen. Warum das so ist, erklärt Professor Stefano Passerini, Direktor des HIU und Leiter der Forschungsgruppe Elektrochemie der Batterien: „Im Elektrolyten LP30 entstehen Partikelrisse an der Kathode. Innerhalb dieser Risse reagiert der Elektrolyt und zerstört die Struktur. Zudem bildet sich eine dicke moosartige lithiumhaltige Schicht auf der Anode.“ Die Forschenden verwendeten daher stattdessen einen schwerflüchtigen, nicht entflammbaren ionischen Flüssigelektrolyten mit zwei Anionen (ILE). „Mithilfe des ILE lassen sich die Strukturveränderungen an der nickelreichen Kathode wesentlich eindämmen“, berichtet Dr. Guk-Tae Kim von der Forschungsgruppe Elektrochemie der Batterien am HIU.

Kapazität über 1.000 Ladezyklen zu 88 Prozent erhalten

Die Ergebnisse: Die Lithium-Metall-Batterie erreicht mit der Kathode NCM88 und dem Elektrolyten ILE eine Energiedichte von 560 Wattstunden pro Kilogramm (Wh/kg) – bezogen auf das Gesamtgewicht der Aktivmaterialien. Sie weist anfänglich eine Speicherkapazität von 214 Milliamperestunden pro Gramm (mAh/g) auf; über 1.000 Ladezyklen bleibt die Kapazität zu 88 Prozent erhalten. Die Coulomb-Effizienz, die das Verhältnis zwischen entnommener und zugeführter Kapazität angibt, beträgt durchschnittlich 99,94 Prozent. Da sich die vorgestellte Batterie auch durch eine hohe Sicherheit auszeichnet, ist den Forschenden aus Karlsruhe und Ulm damit ein wesentlicher Schritt auf dem Weg zur kohlenstoffneutralen Mobilität gelungen.

Originalpublikation (Open Access)

Fanglin Wu, Shan Fang, Matthias Kuenzel, Angelo Mullaliu, Jae-Kwang Kim, Xinpei Gao, Thomas Diemant, Guk-Tae Kim, and Stefano Passerini: Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule. Cell Press, 2021. DOI: 10.1016/j.joule.2021.06.014

Hinweis: Dieser Text wurde am 29.08.2021 aktualisiert. Um Missverständnisse zu vermeiden, haben wir die Überschrift dieser Pressemitteilung angepasst und im Vorspann die Information „bezogen auf das Gesamtgewicht der Aktivmaterialien“ ergänzt: Die spezifische Energiedichte von 560 Wattstunden pro Kilogramm bezieht sich auf das Gesamtgewicht der Aktivmaterialien (Anode, Kathode), nicht einer möglichen industriefertigen Batterie. Das Team hat jedoch eine funktionierende Laborzelle konstruiert, auf die sich eben diese Werte beziehen.

 

Weitere Information

https://doi.org/10.1016/j.joule.2021.06.014
https://www.kit.edu/kit/pi_2021_075_rekordverdachtige-lithium-metall-batterie.php

Weitere Events

Zur Eventübersicht

Wissenschaftspreis für Prof. Maximilian Fichtner

22. Juli 2024 Mit seiner viel beachteten Forschung zu nachhaltigen Batteriespeichern sind Professor Maximilian Fichtner, Direktor des HIU, mehrere wegweisende Durchbrüche gelungen – und er hat viel zum Ausbau und zur Sichtbarkeit des strat... Mehr erfahren

5. MagBatt-Konferenz über Magnesiumbatterien (18-20. Sept.)

18 bis 20. September 2024 Das 5. Internationale Symposium für Magnesiumbatterien (MagBatt V) findet vom 18. bis 20. September 2024 in Ulm statt. Wie immer werden wir einige der weltweit führenden Batterie-Referenten begrüßen. Die Konferen... Mehr erfahren

Dominic Bresser zum Professor berufen

01. Juni 2024 Der HIU-Forschungsgruppenleiter Dr. Dominic Bresser wurde zum 1. Juni 2024 als Professor an der Universität Ulm berufen. Dominic Bresser beschäftigt sich seit etwa 14 Jahren mit der Erforschung von elektrochemischen Energiespe... Mehr erfahren

ENTISE-Projekt unter HIU-Beiteiligung gestartet

02. Mai 2024 Bundesforschungsministerin Bettina Stark-Watzinger und Ministerialdirektor Michael Kleiner vom Ministerium für Wirtschaft, Arbeit und Tourismus zu Besuch in Ulm   Die Herstellung neuartiger Hochleistungsbatterien für Ele... Mehr erfahren

Kreistag-Abgeordnete interessiert Batterieforschung

02. Mai 2024 36 Abgeordnete des Alb-Donau-Kreistages trafen sich in der Universität Ulm, um sich über das aktuelle Forschungsgeschehen zu informieren. Neben den Kreisrätinnen und Kreisräten des Alb-Donau-Kreises war auch Heiner Scheffold,... Mehr erfahren